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Outline

In 1959, Paul Erdős used probabilistic methods to construct, for each
finite k, a finite graph with chromatic number > k and with no cycles
of length < k.

This theoretical work has practical applications in proving useful
negative results in algebraic and modal logic:

A. StrRRA is not elementary,

B. RRA has no canonical axiomatisation (and worse),

C. there are canonical varieties of BAOs that are not elementarily
generated.

I will describe these applications.
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Relation algebra primer

A relation algebra is an algebra A = (A,+,−, 0, 1, 1
,
, ,̆ ;) that

satisfies certain equations laid down by Tarski in 1941.

RA denotes the variety of relation algebras.

Intended examples: (℘(U × U),∪, \, ∅, U × U,=,−−1, | ).
RRA denotes the class of subalgebras of products of these.
A relation algebra is said to be representable if it is in RRA.

Tarski: RRA is a variety.
Lyndon: RRA ⊂ RA.
Monk: RRA is not finitely axiomatisable.

Relation algebras are examples of Boolean algebras with (normal
additive) operators (BAOs).
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Duality, atom structures

Consider relation symbols R1
, (unary), R˘ (binary), R; (ternary).

An atom structure is a relational structure of this type.

Given an atom structure S = (A, R1
, , R˘, R;), we can form its

complex algebra Cm S = (℘(A),∪, \, ∅, A, 1
,
, ,̆ ;), where

• 1
,
= {x ∈ A : S |= R1

,(x)},

• X̆ = {y ∈ A : ∃x ∈ X(S |= R˘(x, y))},

• X ;Y = {z ∈ A : ∃x ∈ X ∃y ∈ Y (S |= R;(x, y, z))}.

Under certain conditions on S, Cm S will be a relation algebra.

We write StrRRA for {S : Cm S ∈ RRA}.

This can all be done for BAOs: we can form Cm S; for a variety V of
BAOs, StrV = {S : Cm S ∈ V}.
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Graphs

Here, graphs are undirected and loop-free: G = (V, E) where
E ⊆ V × V is irreflexive and symmetric.

For k ≥ 3, a cycle of length k in G is (here) a sequence
v1, . . . , vk ∈ V of distinct nodes with (v1, v2), (v2, v3), . . . , (vk, v1) ∈ E.

A subset X ⊆ V is independent if E ∩ (X × X) = ∅.

For k < ω, a k-colouring of G is a partition of V into k independent
sets. The chromatic number χ(G) of G is the least k < ω such that G

has a k-colouring, and ∞ if there is no such k.

Example 1 A graph has a 2-colouring iff it has no cycles of odd
length.
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Relation algebras from graphs

Given a graph G = (V, E), we can form an atom structure α(G):

• The atoms are 1
,
, rx, bx, gx (for x ∈ V ). Idea: red, blue, green.

• α(G) |= R1
,(a) iff a = 1

,
,

• α(G) |= R˘(a, b) iff a = b,

• α(G) |= R;(a, b, c) for all atoms a, b, c except where:
– one of a, b, c is 1

,
and the other two are distinct,

– a = rx, b = ry, c = rz, where {x, y, z} is independent,
– similarly for b, g.

We write A(G) = Cm α(G).

Lemma 2 For any graph G, A(G) is a relation algebra.

Theorem 3 If G is infinite, then A(G) ∈ RRA iff χ(G) = ∞.

The proof uses games and Ramsey’s theorem.
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A. Application 1 (joint work with Hirsch)

Question (Maddux, 1982): Is StrRRA an elementary class?

Theorem 4 (Erd ős, 1959) For every finite k, there is a finite graph
Ek with chromatic number > k and with no cycles of length < k.

Let Gk =
⋃

l≥k El (disjoint union of graphs), and let G =
∏

D Gk be a
non-principal ultraproduct of the Gk. Gk, G are infinite. We have:

• For each k, χ(Gk) = ∞. So A(Gk) ∈ RRA, and α(Gk) ∈ StrRRA.

• Gk has no cycles of length < k. So G has no cycles at all!
By example 1, χ(G) = 2. So A(G) /∈ RRA.

• A(G) = Cm α(
∏

D Gk) ∼= Cm
∏

D α(Gk) (easy to check).
So

∏

D α(Gk) /∈ StrRRA.

Hence, StrRRA is not closed under ultraproducts and so is not
elementary. Answer to Maddux: ‘no’.
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B. Canonicity

For a relation algebra or BAO A, the set of ultrafilters of A forms an
atom structure A+. The canonical extension of A is Aσ = Cm(A+).

• A class K of relation algebras/BAOs is canonical if
A ∈ K ⇒ Aσ ∈ K.

• An axiom τ is canonical if A |= τ ⇒ Aσ |= τ .

Monk showed that RRA is canonical.

Question (Venema, ∼1995): Does RRA have a canonical
axiomatisation – each individual axiom in it is canonical?
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Preliminary 1: ‘local’ version of theorem 3

Theorem 3 said that for infinite G, A(G) is representable iff
χ(G) = ∞.

In fact, the higher χ(G) is, the nearer A(G) gets to being
representable:

Proposition 5 Let Σ be any axiomatisation of RRA. Then

1. For all k < ω, there is finite X ⊆ Σ such that for all infinite G,
if A(G) |= X then χ(G) > k.

2. For any finite X ⊆ Σ, there is m < ω such that for all G,
if χ(G) ≥ m then A(G) |= X.

This can be proved by games, Ramsey arguments, and first-order
compactness.
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Preliminary 2: Erd ős++

Using a variant of Erdős’s argument, it can be shown that

Proposition 6 For any 2 ≤ m < ω, there is an inverse system

π0 π1
S : G0 ←− G1 ←− · · ·

of finite graphs Gi with χ(Gi) = m, and surjective ‘p-morphisms’ πi,
such that G = lim← S is infinite and χ(G) = 2.

p-morphism duality gives a direct system A(G0) → A(G1) → · · · of
finite relation algebras and embeddings. Let D = lim→ A(Gi).

Lemma 7 (essentially Goldblatt) Dσ ∼= A(G).
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Application 2 (joint work with Venema)

Theorem 8 There is no canonical equational axiomatisation of RRA.

Proof. If there were such an axiomatisation Σ, proposition 5 gives
1. finite X ⊆ Σ such that for any infinite G, A(G) |= X ⇒ χ(G) > 2,
2. m < ω such that if χ(G) ≥ m then A(G) |= X.

Proposition 6 gives an inverse system G0 ← G1 ← · · · with
χ(Gi) = m (all i), and infinite inverse limit G with χ(G) = 2.

χ(Gi) = m, so A(Gi) |= X for all i. Hence D = lim→ A(Gi) |= X.

X is canonical, so Dσ |= X.

But Dσ ∼= A(G), so A(G) |= X; and G is infinite. Hence χ(G) > 2,
contradiction.

Worse: can strengthen to show RRA has no axiomatisation with only
finitely many non-canonical first-order sentences.
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C. Canonicity and elementary generation

A variety V of BAOs is elementarily generated if it is generated by
{Cm S : S ∈ K} for some elementary class K.

Theorem 9 (mostly Goldblatt 1989, extending Fine 1975)

1. Any elementarily generated variety is canonical.

2. Write Cst V = {A+ : A ∈ V}. Recall StrV = {S : Cm S ∈ V}.

• V is canonical iff Cst V ⊆ StrV.

• V is elementarily generated iff any ultraproduct of structures
in Cst V is in StrV.

Question (Fine 1975, Goldblatt): does the converse of (1) hold?
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Chromatic number generalised to algebras

We can regard a graph G = (V, E) as an atom structure of the BAO
Cm G = (A,+,−, 0, 1, e, d), where A = ℘(V ) and for a ∈ A,

• e(a) = {x ∈ V : ∃y ∈ a((x, y) ∈ E)} (neighbours of nodes in a),

• d(a) =

{

1, if a > 0,
0, otherwise.

For a BAO A of this type, and k < ω, say χ(A) ≤ k if

A |= ∃x0 . . . xk−1

(

∑

i<k

xi = 1 ∧
∧

i<k

(xi · e(xi) = 0)
)

.

χ(A) is the least k with χ(A) ≤ k, if any; ∞ if not.

Note: χ(Cm G) = χ(G) for any graph G.
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Application 3 (joint work with Goldblatt, Venema)

Recall Ek is a finite graph with χ(Ek) > k and with no cycles of
length < k. We can assume |E0| < |E1| < · · ·.

Let K = {A : ∀k < ω(|A| ≥ 2|Ek| ⇒ χ(A) > k)} — elementary.
Let V be the variety generated by K.

Lemma 10 V is canonical.

Lemma 11 For each k, Cm Ek ∈ K ⊆ V.
As Cm Ek is finite, we have Ek

∼= (Cm Ek)+ ∈ Cst V.

Let D be a non-principal ultrafilter on ω. As usual, E =
∏

D Ek has
no cycles, so χ(E) = 2.

Lemma 12 E /∈ StrV.

Conclude by Goldblatt’s test that V is a canonical variety that is not
elementarily generated.
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Conclusion

We saw three applications of Erdős graphs:

A. StrRRA is not elementary,

B. RRA has no canonical axiomatisation (and worse),

C. there are canonical varieties of BAOs that are not elementarily
generated.

Le Bars used random graphs to show failure of 0–1 law for frame
satisfiability in propositional modal logic.

Probabilistic constructions are very powerful. Perhaps there will be
other applications of them in AL/ML. . .
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