
Mathematical Logic Quarterly, 29 February 2008

Weakly associative relation algebras with projections
Agi Kurucz
Department of Computer Science, King�’s College London, Strand, London, WC2R 2LS, U.K.

Key words weakly associative relation algebras, quasi-projections, decision problems

Built on the foundations laid by Peirce, Schröder and others in the 19th century, the modern development
of relation algebras started with the work of Tarski and his colleagues [21, 22]. They showed that relation
algebras can capture strong rst-order theories like ZFC, and so their equational theory is undecidable. The
less expressive classWA of weakly associative relation algebras were introduced by Maddux [7]. Németi [16]
showed that WAs have a decidable universal theory. There has been extensive research on increasing the
expressive power of WA by adding new operations [1, 4, 11, 13, 20]. Extensions of this kind usually also
have decidable universal theories. Here we give an example�—extending WAs with set-theoretic projection
elements�—where this is not the case. These �‘logical�’ connectives are set-theoretic counterparts of the axiomatic
quasi-projections that have been investigated in the representation theory of relation algebras [6, 19, 22]. We
prove that the quasi-equational theory of the extended class PWA is not recursively enumerable. By adding
the difference operator one can turnWA and PWA to discriminator classes where each universal formula is
equivalent to some equation. Hence our result implies that the projections turn the decidable equational theory
of �‘WA �’ to non-recursively enumerable.

Copyright line will be provided by the publisher

1 Introduction and results
A weakly associative relation algebra (WA) is an algebra of the form

where (the universe of) is a nonempty collection of binary relations between elements of some set (the
base of) such that is a Boolean set algebra with its unit being a reexive and symmetric
binary relation on , and

def

and for all ,

def and
def

belong to . We describe properties ofWAs in the rst-order language (with equality) of the similarity type
that consists of the Booleans , , , binary function symbol (for composition), unary function symbol (for
converse) and constant (for identity). (We will also use and binary in the usual sense, and as a
shorthand for .)
WAs were introduced by Maddux [7], who showed that they can be axiomatised by nitely many -type

equations. The name �‘weakly associative�’ comes from the axiom

which is a weaker form of associativity of relation composition.

E-mail: agi.kurucz@kcl.ac.uk

Copyright line will be provided by the publisher

2 Agi Kurucz: Weakly associative relation algebras with projections

If the unit element of a WA is the full Cartesian product of its base then the algebra is called a
set relation algebra. Composition in set relation algebras is fully associative and computationally they are more
complex than WAs: While even the universal theory of WAs is decidable [16], set relation algebras have an
undecidable (though recursively enumerable) equational theory [3, 21, 22].
Tarski [21,22] introduced the so-called quasi-projections in an attempt to characterise set relation algebras by
-type equations. Quasi-projections are elements of a -type algebra that satisfy the following equations:

Take any nonempty set that does not contain ordered pairs, and let be the closure of under forming
ordered pairs, that is,

def where def (1)

The standard examples of quasi-projections are the �‘real�’ set-theoretic projection functions (taken as binary rela-
tions) over such a set :

def def

Observe that if and are elements of a set relation algebra with base then (qp1)�–(qp3) hold in the algebra:
(qp1) expresses that whenever , while (qp2) and (qp3) simply say that the projections are
functions.
Maddux [8, 10] added the projections to the similarity type, that is, considered the extension of with

two constant symbols and . He introduced true pairing algebras as -type algebras of the form

where is a set as in (1) and is the set relation algebra of all subsets of (see also [5]). Sain and
Simon [14,18] showed that the -type equational theory of true pairing algebras becomes very complex, in fact
it is -complete.

There has been extensive research on increasing the expressive power of WAs by adding new operations
[1,4,11,13,20]. Extensions of this kind usually also turned out to have decidable universal theories. In this paper
we discuss what happens if we add set-theoretic projections toWAs. As and are not necessarily subsets
of the unit of aWA with base , the sensible operations to add are their �‘ -relativised�’ versions, just like in
the denition of composition inWAs. This way we dene a PWA to be a -type algebra

such that is aWA. Observe that, while (qp2) and (qp3) hold in every PWA, (qp1)
might not. We call thosePWAs where (qp1) hold closed. (Note that the base of a closedPWA is not necessarily
closed under forming ordered pairs: If a pair does not belong to the unit, then it can happen that and
are in but is not.)
Let denote the true pairing algebra whose base is the closure of the singleton set for

some non-pair set (see (1)). Clearly, is a PWA. Recall that a quasi-equation is a formula of the form
, where is a conjunction of equations and is an equation. Our main result is the following:

Theorem 1.1 Let K be a class of PWAs such that belongs to K for some non-pair set . Then the
quasi-equational theory of K is not recursively enumerable. In particular, the quasi-equational theories of all
PWAs and all closed PWAs are not recursively enumerable.

Copyright line will be provided by the publisher

mlq header will be provided by the publisher 3

WAs do not form a discriminator class (see e.g. [9]), that is, not every universal formula is equivalent to
an equation over WAs. A similar argument shows that PWAs do not form a discriminator class either, thus
Theorem 1.1 does not say anything about their equational theory. However, one can add a discriminator term to
WAs and PWAs e.g. by introducing the following difference operator . Let be aWA or PWA. For every
in , let

def
if
if
else

(Observe that in set relation algebras the -type term denes such a .)
We denote the resulting algebra by , and call it aWAD or a PWAD, respectively.WADs were introduced and
studied byMikulás [13], who showed that their equational theory is decidable. As a consequence of Theorem 1.1
we obtain that the projections �‘ruin�’ the computational behaviour ofWADs:
Theorem 1.2 Let K be a class of PWADs such that belongs to K for some non-pair set . Then the

equational theory of K is not recursively enumerable. In particular, the equational theories of all PWADs and
all closed PWADs are not recursively enumerable.
We prove Theorems 1.1 and 1.2 by giving a reduction of the well-known [2, 12] non-recursively enumerable

set of unsolvable Diophantine equations. Throughout, denotes the similarity type of arithmetic, that is,
consists of a constant , unary function symbol and binary function symbols and . By a Diophantine
equationwe mean a -type atomic formula. We let (with a slight abuse of notation)

def

denote the standard model of arithmetic.
We will give a recursive translation of Diophantine equations to -type quasi-equations such that for any

Diophantine equation , is unsolvable in iff its translation is valid in K. The quasi-equation is of the
form , where is a conjunction of equations that �‘forces�’ some part of PWAs to �‘behave like�’ ,
and the translation of into the -type term �‘preserves the behaviour of numbers.�’
The idea of using unsolvable Diophantine equations as the master problem for complexity issues in algebras

of relations comes from Németi [17]. Our reduction is a renement of the one used by Sain and Simon [18]
for dening arithmetic in true pairing algebras. Like [18], rst we also dene numbers and the standard model
of arithmetic in our algebras (Sections 2�–4), and then we turn Diophantine equations to formulas of a relational
similarity type containing binary predicates only. Then we use the method of Tarski and Givant [22] to translate
these �‘all-binary�’ formulas to relation algebraic terms (Section 5).
Each of these steps has been designed to work having true pairing algebras in mind, that is, when all the

necessary pairs are present in the unit. In general, this is not the case for �‘relativised�’ relation algebras likePWAs.
We are dealing with the issue of forcing the existence of necessary pairs in Section 3. Another problem that had
to be solved was that the lack of a discriminator term made it impossible to dene numbers in PWAs uniquely,
and we had to deal with a whole set of elements �‘mimicking�’ each number instead. Finally, in Section 5 we
discuss why the Tarski-Givant translation works in PWAs for the restricted kind of all-binary formulas obtained
from Diophantine equations.
None of these tricks helped to overcome the nal hurdle: we needed a discriminator term to convert our

quasi-equation to an equation. So the the following question remains open:
Problem. Is the equational theory of PWAs decidable?

2 Defining numbers in PWAs
To begin with, let us recall some basic computations inWAs. Consider the following unary -type terms:

Do def

def

def

Copyright line will be provided by the publisher

4 Agi Kurucz: Weakly associative relation algebras with projections

For any binary relation , we let denote the domain of . A routine computation shows that, for every
WA and every in ,

Do

(Note that in set relation algebras one can use the simpler terms and for and , respectively, but
they might not dene the above sets in an arbitraryWA.)
For any set , we can dene �‘numbers�’ by taking def , def . These numbers

belong to the base of the true pairing algebra . Moreover, their collection

def

is an element of , with acting as successor function on it.
Below we discuss how to dene numbers and the successor function in any PWA. To this end, take some

variable (intended to represent the set of numbers), and dene a -type term by taking

def Do Do

Observe that denes the number in in the sense that .
From now on, we write without parentheses, whenever any of is below (since weak associa-

tivity (wa) holds in PWAs). Let be the conjunction of the following -type equations:

It is straightforward to check the following:
Lemma 2.1 .
On the other hand, we show that these equations force to simulate natural numbers in any PWA (see Fig. 1

for the idea). To this end, we x some PWA (with base) and an element in .
Lemma 2.2 If then the following hold:

(i) .

(ii) For every , .

(iii) The set def and is not empty.

(iv) For every , if then .

(v) For every ,

– def is a total function on ,
– is isomorphic to .

(vi) .

Copyright line will be provided by the publisher

mlq header will be provided by the publisher 5

P r o o f. Items (i) and (ii) hold by (e1) and (e2), respectively. As the term denes the set
in , (iii) holds by (e3).
For (iv): If and then , so for some , and we have

and . Therefore, by (e1) and (e4). Now follows by (e1)
and (e5).
Item (v) is obvious from the denitions of and .
For (vi): First, by (ii), for all . Now assume that , but for any

, . Then, by (iv) and (i), for every we can dene some by taking def and
def . So we have for every , and so

is an innite descending -chain, which cannot exist in ZFC.

:

:

:

�‘ �’ �‘ �’ �‘ �’

Fig. 1 Numbers in a PWA.

3 Defining sequences of numbers
We need to have not only the successor function, but addition and multiplication as well, so we have to deal with
pairs and triples of numbers. Moreover, in order to encode some of their properties, we need to be able to handle
sequences of even longer length.
None of these is a problem in . As its base is closed under forming ordered pairs and its unit is ,

all these sequences are in its unit. However, in an arbitraryPWA we have to �‘force�’ them to be present, as we will
see below. Another problem is that, as we have seen in the previous section, we may have multiple �‘zeros�’, that
is, the set can have many elements. As we intend to dene addition and multiplication in the usual recursive
way, we have to exclude somehow �‘mixed�’ sequences, like for distinct zeros . In other
words, we want a number-tuple like to be represented by the set .
We begin with dening the powers of a set . Let def and for any , , let

def

and let def . For any , we let

def

that is, is the number of �‘ -components�’ in . For any , we dene

iff

Copyright line will be provided by the publisher

6 Agi Kurucz: Weakly associative relation algebras with projections

Clearly, is a strict partial order.
As we mentioned above, even if , in general is not necessarily a subset of , for every

. We let denote the set of all elements from that �‘hereditarily�’ belong to , that is def

and def .
We show that is denable in terms of in any PWA. To this end, let def , and for any

, , let

def (2)

Further, for any , we let

id def (3)

Now recall the equation (qp1) (expressing closedness of a PWA). Observe that if (qp1) holds in a PWA then
, , and , whenever .

The following lemma shows the meaning of the terms and id in closed PWAs:
Lemma 3.1 If (qp1) then, for every , we have

(i) , and

(ii) id .

P r o o f. For (i): We prove the statement by induction on the structure of . The case of is obvious.
Assume now that . First, take some , , .
By (qp1), , . Therefore, by the induction hypothesis,

, and so . Now
can be proved similarly. The proof of the inclusion is a straightforward computation.
For (ii): Take some . By (i), we have , and so ,

and all follow by (qp1). Therefore,
as required. The inclusion is an easy consequence of (i).

Our next aim is to �‘force�’ to contain only �‘pure�’ number tuples, that is, those that have numbers �‘built
up from�’ the same zero at each of their coordinates. To begin with, we represent every as a tree
whose branches are words of s and s (instead of a tedious denition, see Fig. 2 for an example).

Fig. 2 as a tree.

Let denote the set of all branches (taken from root to leaf) of (for instance,
consists of , , , , , , and). For every and , let

denote the element of that is �‘at the end�’ of branch (e.g., if ,
and then). We dene a �‘ -successor�’ function that

increases by one, but leaves unchanged otherwise. For all , , we let

def if
if and

Copyright line will be provided by the publisher

mlq header will be provided by the publisher 7

We want to dene this -successor function in our algebras. To this end, for any word of s and s we dene a
-term by taking def and

def if is followed by
if is followed by

The following can be proved by induction on :

For all , , , if then . (4)

Indeed, if and then follows. Now suppose that
and begins with followed by some . Then . If

and then , , and , for some . Thus ,
so by the induction hypothesis, we have . Therefore,

The case when begins with followed by some can be proved analogously.
We can single out the special number tuples from as follows. For , we call a tuple -pure if

for every there is some such that . Let denote the set of all -pure elements in
, and let

def

that is, is the set of all pure elements in .
Now recall the term id from (3) and Lemma 3.1. Let be the following conjunction of - type

equations:

id

The next lemma shows how we can force pure number-tuples to be in the unit.
Lemma 3.2 Let . If

then holds, that is, the pure elements of ‘hereditarily’ belong to .

P r o o f. We prove the lemma by induction on . To begin with, we have by Lemma 2.2(vi).
Now let and suppose that holds, for every . For all and
, let denote the �‘all- �’ element in (e.g., if then is).

First, we claim that belongs to , for every . Indeed, as and
for by the induction hypothesis, we only need to show that belongs to . If then

belongs to , and so to . So suppose that, say, . Then we can again use the
previous �‘trick:�’ as belongs not only to but also to , belongs to for some ,
and so belongs to . As , follows by the induction hypothesis.
Next, we claim that if for some , then for every . Indeed, let

and suppose rst that begins with followed by some . As , by Lemma 3.1(ii)
we have id . As is symmetric, we also have , and so id .
Now by we obtain that , and so follows by (4) above. Therefore,
we have as required. The case when begins with followed by some

is similar.

Copyright line will be provided by the publisher

8 Agi Kurucz: Weakly associative relation algebras with projections

Next, we want to exclude non-pure number-tuples from . First, we can exclude non-pure zero-pairs by
the following equation:

Recall from Section 2 that . Now it is straightforward to see that if
then

for all , if then . (5)

Next, we show that we can use the terms to simulate the �‘ -predecessor�’ function as well. Namely, suppose
that . The proof of the following claim is similar to that of (4):

For all , , ,

if for any and then and . (6)

Now, for every , recall the term from (2) and Lemma 3.1. For every , let be
the same as but with the variable �‘at its th place�’ being replaced by Do Do (that is, by the domain
of the predecessor function). For instance, if and is then is

Do Do

Then let

id def

and let be the following conjunction of equations:

id

Finally, let be the conjunction of , (qp1) and (e6). Now Lemma 2.1, together with the fact that the unit
of is closed under forming ordered pairs, gives us the following:

Lemma 3.3 , for every .
On the other hand, we have:
Lemma 3.4 For every , if

then .

P r o o f. We prove by induction on that, for all , , we have . For
, we have by Lemma 2.2(vi), so the statement follows.

Now let and suppose that if then , for every . We call an element
an all-zero if for all (it can be a different for different s). Recall that denotes

the all-zero in where the is the same everywhere. First, we claim that if is an all-zero in then
does not belong to . Indeed, let for some all-zeros , . There are three cases:

(1) either ,

(2) or ,

(3) or , , and .

Copyright line will be provided by the publisher

mlq header will be provided by the publisher 9

In case (1) follows by the induction hypothesis, and so we have . Case (2) is
similar. Case (3): If then the statement follows from (5) above. So suppose that, say, .
As belongs not only to but also to , belongs to for some . Therefore,

belongs to , and belongs to , (7)

by Lemma 3.2. On the other hand, belongs to but, as , it does not belong to
. So , by the induction hypothesis. Therefore, by (7) , and so it does

not belong to either.
Next, we claim that if for some , then . Indeed, suppose rst that

begins with followed by some , that is, for some . By
Lemma 3.1(ii) we have id , and so id . Now by

we obtain that , and so follows by (6), as required. The
case when begins with followed by some is similar.

As a consequence of Lemmas 3.1, 3.2 and 3.4, we obtain that the terms dene the pure tuples in the powers
of :
Lemma 3.5 For every , if

then

(i) , and

(ii) id .

Note that we did not necessarily exclude non-pure number tuples like from the unit. It can
happen that, say, but . That is why in what follows when we deal with
a number-tuple from , then we always explicitly �‘bind�’ it by the corresponding term .

4 Defining addition and multiplication
Now we have all the tools handy to dene the addition and multiplication operations on numbers in PWAs. As
they are binary functions, they can be considered as ternary relations. We intend to simulate each of them as a set
of pure number triples, that is, as a subset of .
Let and be fresh variables and let be the conjunction of , ,

and the following equations:

Do id

id
id id

Do id

id
id id

Lemma 3.3, together with some tedious but straightforward computations, results in the following:

Copyright line will be provided by the publisher

10 Agi Kurucz: Weakly associative relation algebras with projections

Lemma 4.1 Let

def

def

Then .
On the other hand, we show that these equations force structures isomorphic to the standard model of arith-

metic in any PWA. To this end, we x some PWA (with base) and elements Add Mult in . Recall the
notation , and from Section 2.
Lemma 4.2 Suppose Add Mult . Then the following hold, for every :

(i) Add and Mult ,

(ii) def Add and def Mult are total functions on ,
and

(iii) def is isomorphic to .

P r o o f. Item (i) clearly follows from (e7), (e12) and Lemma 3.5.
For (ii): As by Lemma 3.5, and are functions on by (e9) and (e14). That each

of them has as its domain follows from (e8) and (e13).
For (iii): First, we claim that for all , ,

(8)

Indeed, this is proved by induction on . For , as Lemma 3.5 implies that and
are included in , we have

id

and so Add by (e10). Now assume that (8) holds for . Since the set
is also included in , we have

id id

and so

id id Add

by the induction hypothesis. Now Add follows by (e11).
Next, using (8) and that the appropriate -pure tuples belong to , one can prove by another induction on
that , for all , . Equations (e15) and (e16) are used in the proofs of

and , respectively.

5 Encoding Diophantine equations in PWAs
We x a class K of PWAs such that the true pairing algebra belongs to K for some non-pair set . In
order to prove Theorem 1.1, we need to dene a recursive translation of Diophantine equations to -type quasi-
equations such that for any Diophantine equation , is unsolvable in iff its translation is valid in K. As
we shall see below, will be of the form , for some -type term having the same variables
, and as .
The term is obtained from via the following three steps:

Copyright line will be provided by the publisher

mlq header will be provided by the publisher 11

(1) First, we translate to a kind of equivalent formula of a relational similarity type where all non-logical
symbols are binary predicates. Here we use the fact that, with the help of the projections, the binary functions
of addition and multiplication can be expressed as not only ternary but binary relations. When we evaluate a
Diophantine equation in , all variables in it range over numbers. When we turn addition and multiplication
to binary relations, some variables will range over pairs of numbers.

(2) Then we use the translation of Tarski and Givant [22] to turn the resulting �‘all-binary�’ formula to an equiv-
alent formula having only three variables (free and bound). This again can be done because of the presence
of the projections. This translation is meant to work for true pairing algebras and in general we have only
PWAs with a �‘relativised�’ unit. However, we shall see that one direction of the translation still works in
arbitrary PWAs as well.

(3) Finally, we use another technique of Tarski and Givant [22] to turn the resulting �‘three-variable, all-binary�’
formula to a -type term in a �‘meaning preserving�’ way. Again, this translation is meant to work for true
pairing algebras, but as the all-binary formulas obtained in step (2) are of a special �‘existential conjunctive�’
form, one direction continues to work in arbitrary PWAs.

5.1 Translating Diophantine equations to ‘all-binary’ formulas
Let denote the relational similarity type having the following binary predicate symbols:

, , , , , , and . (9)

We call a -type atomic formula irreflexive if and are distinct variables.
We dene a recursive translation which turns each Diophantine equation to a conjunction of irreexive

atomic -type formulas. At each step of the translation below, always denote fresh, distinct variables.
def , whenever and are distinct,
def ,
def ,

def ,
def ,
def ,

def .

Observe that does not occur in (we will need it later on), and if a variable occurs in then it occurs in
as well.
Now assume that is a PWA with base and Add Mult for some Add Mult in .

We dene a -type structure by taking

Add Mult def Add Mult (10)

(here the interpretations of the predicate symbols are listed following their order in (9)). Add Mult is meant to
be a kind of �‘relational counterpart�’ of the simulated arithmetic in . However, calculations in Add Mult and
are not completely analogous. Quantiers in Add Mult range over , so all pairs in are �‘available.�’

On the other hand, only pairs in are �‘available�’ in and is typically a proper subset of . Yet, the
following lemma shows that the translation works.
Lemma 5.1 Let be a PWA such that Add Mult for some Add Mult in . Let be

a Diophantine equation with variables , and let be those variables in that do not occur
in . Then the following hold:

Copyright line will be provided by the publisher

12 Agi Kurucz: Weakly associative relation algebras with projections

(i) If Add Mult then there exists some such that, for all
, ,

– , and
– , whenever or occurs in for some variable , and
otherwise.

(ii) For all , ,

iff Add Mult

(iii) iff Add Mult

P r o o f. Item (i) is proved by induction along the denition of , using Lemma 4.2. Another induction plus
(i) and Lemma 4.2 prove (ii). Item (iii) follows from (i) and (ii).

5.2 Using three variables only
The Tarski�–Givant [22] translation turns any -type sentence to a -type sentence that is equivalent to
in true pairing algebras and has only three variables , , . Below we go through the steps of this translation
and see that, when applied to formulas like above, one of its directions works in arbitrary PWAs as well.
To begin with, by renaming bound variables we may assume that the sentence we obtained in the

previous subsection is of the form

(11)

where the variables in are all distinct from each other and from , and . The idea is to get rid
of the variables in by using to represent . The translation makes disappear one
by one, using the projections and , as auxiliary variables. To this end, x some and suppose that

is an irreexive atomic -type formula having variables from , , , Then the -type
formula

(having variables from , , ,) is recursively dened as follows:

def , if

def , if

def , if

def , if

def , if

def

def

def

def

def

Copyright line will be provided by the publisher

mlq header will be provided by the publisher 13

def

(Note that in the last two cases we added the seemingly superuous subformula in order to achieve that
every subformula of of the form has two free variables. This property will be used in the
third step of our translation, see Section 5.3.)
Now we get rid of the in one by one by dening formulas , for , as follows. Let def

(with variables as in (11)) and for , let be obtained by simultaneously replacing each subformula in
of the form with .
An inspection of this denition shows the following properties of the , for every :

has free variables .

is obtained from irreexive atomic formulas using conjunction and existential quantication.

All quantiers in are of the form , for .

Every subformula of of the form has two free variables.

In particular, only the variables , and occur in , and it has and as its free variables.
As a consequence of the results in [22] we have:

(12)

However, an induction on , together with inspecting the corresponding cases of the denition of ,
shows that one direction holds in a more general setting:
Lemma 5.2 Assume that is a PWA with base and Add Mult for some Add Mult

in . For all , , if

Add Mult

then there exist such that and

Add Mult

As a consequence we obtain that

Add Mult

5.3 Translation to relation algebra terms
The second part of the Tarski�–Givant [22] translation turns any three-variable -type formula having and
as its free variables to a -type term. As our formula above is of a special kind, below we discuss a special
case of this translation (see also Németi [15] on the general translation, whose presentation is more similar to
ours).
We call a -type formula special if the following hold:

contains (as free and bound) only the variables .

is obtained from irreexive atomic formulas using conjunction and existential quantication.

Every subformula of of the form has two free variables.

Clearly, any subformula of a special formula is special as well. By denition, any special formula is a (possibly
one-element) conjunction of its conjuncts, that is, of special formulas that are not conjunctions and that have
two free variables. For any special formula , dene as the conjunction of those conjuncts of whose free
variables are and . If there is no such conjunct then let def . One can dene and
similarly.

Copyright line will be provided by the publisher

14 Agi Kurucz: Weakly associative relation algebras with projections

Now suppose that is a PWA with base and Add Mult for some Add Mult in .
Recall the -type structure Add Mult from (10). As is interpreted in this structure as , it is easy to see
that

Add Mult (13)

but the other direction might not hold. On the other hand, as in all pairs over its base are available, we
clearly have

(14)

Let be a permutation of the set , and let be a special formula. We let the formula be obtained
by simultaneously replacing every occurrence of (free and bound as well) in with (). Clearly,

is also a special formula. It is not hard to see (cf. e.g. [22, item (ii), p.72]) that, for all -type structures
and all , , in ,

iff (15)

Now we dene a recursive translation which turns any special formula having free variables and to a
-type term having variables from , , as follows:

def ,

def ,

def and def ,

def and def ,

def id ,

def Do Do ,

def and def ,

def and def ,

def ,

def , where is the permutation interchanging and
.

Again, it follows from the results of [22] that, for all special formulas having free variables , and for all
, in the base of ,

iff (16)

The following lemma shows that one direction of (16) holds for arbitrary PWAs:
Lemma 5.3 Assume that is a PWA with base and Add Mult for some Add Mult

in . Then, for all special formulas having free variables , and for all ,

if Add Mult then Add Mult

Copyright line will be provided by the publisher

mlq header will be provided by the publisher 15

P r o o f. The proof is by induction on the number of quantiers in . The cases of atomic formulas and
conjunctions are straightforward. So assume that is of form , and

Add Mult

Add Mult

Then, we have

Add Mult

Add Mult and

Add Mult

Therefore, by the induction hypothesis,
Add Mult

Add Mult

Add Mult

and so by (15) and (13),
Add Mult

as required.

P r o o f o f T h e o r em 1.1. Finally, we can put together the required recursive translation of Diophantine
equations to -type quasi-equations. Assume that we are given some Diophantine equation , having variables

. Take the formula , as dened in Section 5.2. Then let
def

Now let K be a class of PWAs such that the true pairing algebra belongs to K for some non-pair set . We
claim that

is unsolvable in iff K

Indeed, assume rst that is unsolvable, that is, . Let K and , Add,Mult in be such that
Add Mult . By Lemma 5.1 we obtain that Add Mult . Therefore,

Lemma 5.2 gives us Add Mult . By Lemma 5.3, we obtain Add Mult , as
required.
For the other direction, suppose that is solvable, that is, . Take the true pairing algebra
and the elements , and in it. On the one hand, we have ,

by Lemma 4.1. On the other, by Lemma 5.1 we obtain . Therefore,
by (12), (14) and (16). As K, this implies K .

P r o o f o f T h e o r em 1.2. Here we use as a shorthand for . It is easy to see that
def is a unary discriminator term in PWADs, that is, for every PWAD and every element in

,

if
else

Now, as usual in discriminator classes, one can effectively turn any quasi-equation to an equivalent equation
over PWADs using the following observations. An equation of the form is equivalent to the equation

. An inequality is equivalent to the equation . And a conjunction of the
form is equivalent to the equation .

Copyright line will be provided by the publisher

16 Agi Kurucz: Weakly associative relation algebras with projections

References
[1] H. Andréka, I. Hodkinson, and I. Németi. Finite algebras of relations are representable on nite sets. Journal of Symbolic

Logic, 64:243�–267, 1999.
[2] M. Davis. Hilbert�’s tenth problem is unsolvable. Amer. Math. Monthly, 80:233�–269, 1973.
[3] R. Hirsch and I. Hodkinson. Relation Algebras by Games, volume 147 of Studies in Logic and the Foundations of

Mathematics. Elsevier, North Holland, 2002.
[4] A. Kurucz. Arrow logic and innite counting. Studia Logica, 65:199�–222, 2000.
[5] A. Kurucz and I. Németi. Representability of pairing relation algebras depends on your ontology. Fundamenta Infor-

matica, 44:397�–420, 2000.
[6] R. Maddux. Some sufcient condition for the representability of relation algebras. Algebra Universalis, 8:162�–172,

1978.
[7] R. Maddux. Some varieties containing relation algebras. Trans. Amer. Math. Soc., 8:162�–172, 1982.
[8] R. Maddux. Finitary algebraic logic. Zeitschrift Math. Logik Grundlagen Math., 35:321�–332, 1989.
[9] R. Maddux. Pair-dense relation algebras. Trans. Amer. Math. Soc., 328:83�–131, 1991.
[10] R. Maddux. Finitary algebraic logic II. Math. Logic Quarterly, 39:566�–569, 1993.
[11] M. Marx. Algebraic relativization and arrow logic. PhD thesis, University of Amsterdam, 1995.
[12] Yu. Matiyasevich. Solution of the tenth problem of Hilbert. Mat. Lapok, 21:83�–87, 1970.
[13] Sz. Mikulás. Taming logics. PhD thesis, University of Amsterdam, 1995.
[14] Sz. Mikulás, I. Sain, and A. Simon. Complexity of equational theory of relation algebras with projection elements.

Bulletin of the Section of Logic, Univ. of ódz, 21(3):103�–111, 1992. Full paper is [18].
[15] I. Németi. Free algebras and decidability in algebraic logic. Dissertation for D.Sc. with Hung. Academy of Sciences,

xviii+169 pp., 1986. (In Hungarian).
[16] I. Németi. Decidability of relation algebras with weakened associativity. Procs. Amer. Math. Soc., 100:340�–344, 1987.
[17] I. Németi. On varieties of cylindric algebras with applications to logic. Annals of Pure and Applied Logic, 36:235�–277,

1987.
[18] I. Sain and A. Simon. The complexity of equational theory of relation algebras with projection elements. Technical

report, Math. Inst. Hungar. Acad. Sci., Budapest, 1993.
[19] A. Simon. Connections between quasi-projective relation algebras and cylindric algebras. Algebra Universalis, 56:263�–

301, 2007.
[20] V. Stebletsova and Y. Venema. -algebras. Algebra Universalis, 40:19�–49, 1998.
[21] A. Tarski. On the calculus of relations. Journal of Symbolic Logic, 6:73�–89, 1941.
[22] A. Tarski and S. Givant. A Formalization of Set Theory without Variables, volume 41 of AMS Colloquium Publications.

Providence RI, 1987.

Copyright line will be provided by the publisher

