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1. Introduction

As follows from the title of this chapter, our primary aim is to analyse
possible solutions to the equation

Spatial logic + Temporal logic = x (1.1)

where the items on the left-hand side are some standard spatial and tem-
poral logics, and + is some ‘operator’ combining these two logics into a
single one. The question we are concerned with is how the computational
complexity and the expressive power of the component logics are related
to the complexity and expressiveness of the resulting spatio-temporal
logic x under various combination operators +.



2

To convey the flavour of the problems we are facing when attempt-
ing to answer this question, let us consider two standard spatial and
temporal logics and try to combine them.

Recall from Ch. ?? of this Handbook that one of the basic and natural
logics for reasoning about space is the ‘modal’ logic S4u equipped with
the Boolean operators over subsets of a topological space and the ‘modal’
operators I and C interpreted as the topological interior and closure,
respectively. In this language we can say, for example, that two spatial
objects X and Y are externally connected, EC(X,Y ) in symbols, in the
sense that X and Y share some points but none of them belongs to the
interior of X or Y . This can be expressed, e.g., by means of the following
constraints:

X ∩ Y 6= ∅ and IX ∩ IY = ∅.

Reasoning in S4u is perfectly well understood; it is known to be PSpace-
complete, and various reasonably effective reasoning systems are avail-
able.

For the temporal component we take the standard linear temporal
logic LT L which extends propositional logic with the temporal operators
© (‘tomorrow’), 3F (eventually), and 2F (always in the future). LT L
is interpreted over the flow of time consisting of the natural numbers
(N, <). For example, the following formula says that a day is Saturday
if, and only if, the next day is Sunday:

2F (Saturday ↔ ©Sunday).

Reasoning in LT L is also thoroughly investigated; it is PSpace-complete
as well, and a number of temporal reasoning systems have been imple-
mented.

Now our aim is to construct a combination of S4u and LT L where
we could express, for example, that today spatial objects X and Y are
not externally connected, but tomorrow they are:

¬EC(X,Y ) ∧ ©EC(X,Y ),

or that the spatial object X today is externally connected with the space
©X it will be occupying tomorrow:

EC(X,©X),

or that, starting from some future moment, X will never change its
position:

3F2F (X = ©X).

Having efficient spatial and temporal reasoners S and T at our disposal
(for S4u and LT L, respectively), the quickest way of constructing a com-
bined spatio-temporal reasoning system is to organise their joint work in
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a modular way: first, say, S treats the input constraints regarding for-
mulas that start with temporal operators as atomic, then T deals with
them regarding formulas with spatial operators as atomic, etc. Clearly,
the resulting system works in PSpace. But unfortunately, such a rea-
soner does not take into account any interaction between the spatial
and temporal operators: the problem is that a spatio-temporal formula
is recognised as valid by this reasoner only if it is valid in arbitrary fu-
sions of topological models with (possibly many) isomorphic copies of
the flow of time (N, <). In such models, spatial objects are not moving
in the same space over the same flow of time because the topological
space at moment n may have absolutely nothing to do with the space
at moment n+1, or, dually, every point of space has its own history. In
particular, one could expect the constraint

©EC(X,Y ) ↔ EC(©X,©Y )

to be a valid principle of spatial-temporal logics—yet, our reasoner would
not confirm this: it would claim that the negation of this formula is
satisfiable.

Of course, from a purely semantical perspective, this problem can
easily be overcome by restricting the class of intended models to those
where the same topological space is kept along the whole time line. In
other words, we can assume that the underlying topological space does
not change in time; what changes is the position, shape, size, etc. of
spatial objects. Mathematically this means that the intended spatio-
temporal models for combinations of S4u and LT L are the Cartesian
products of topological spaces and (N, <).

Such models provide a natural interpretation for the formulas con-
sidered above, with the last one being valid in all of them. But on the
other hand, in order to deal with them we need a new, perhaps more
sophisticated reasoning system. Is it, at least in principle, possible to
design an effective complete and sound system of this kind?

A moment’s reflection about the possible computational behaviour of
such a system brings to memory another model, which logicians and
computer scientists know all too well. We mean Turing’s model of com-
putation. The tape of a Turing machine can be regarded as a somewhat
simplified model of space where a ‘spatial object’ is the collection of cells
containing a certain symbol from the alphabet. Putting the problem in
this perspective, one can immediately start suspecting that perhaps even
a modestly expressive spatio-temporal language could be able to describe
the change of spatial objects over time which corresponds to the com-
putation of a Turing machine. And if this is indeed the case then, using
the operator 3F for ’eventually’ it appears almost trivial to state that
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the Turing machine eventually reaches a halting state on a given input,
which would mean that reasoning in the hybrid language cannot be de-
cidable (or, even worse, that the set of valid spatio-temporal formulas is
not recursively enumerable).

Now, obviously, the topological language S4u and many other lan-
guages to be considered in this chapter are not designed to represent
knowledge about the tape of a Turing machine (to begin with, there
is no obvious topology on such a tape). Some much smarter ‘encod-
ing techniques’ may be needed to prove that combinations of S4u and
LT L (and similar logics) are undecidable. Yet, the first major result of
this chapter shows that the intuition behind the simulation of Turing
machines discussed above is correct: näıve and straightforward combi-
nations of spatial and temporal logics (interpreted in Cartesian products
of time and space) almost invariably lead to undecidable hybrids.

The second major result, however, is that by closely inspecting the
expressive means required to simulate Turing machines one can still
find hierarchies of useful and expressive hybrids of S4u and LT L, their
fragments, and some related logics which are decidable and of reasonably
low complexity.

The structure of this chapter is as follows. In the next section, we
discuss in more detail, but still on a rather abstract level, our main
paradigm of ‘snapshot spatio-temporal models’ and most important rea-
soning problems relevant to these models.

Then, in Sec. 3 and 4, we discuss in detail the ingredients of the
spatio-temporal logics to be constructed and investigated in this chap-
ter. We consider two families of spatial logics. The first one is comprised
of formalisms designed for reasoning about topological relations among
spatial objects and ranging from RCC-8 to S4u, possibly with component
counting. A remarkable feature of these logics is their ‘computational
robustness’ in the sense that the complexity of reasoning gradually in-
creases from NP for RCC-8 to PSpace and NExpTime for S4u without
and with component counting, respectively. Moreover, each complex-
ity ‘jump’ in this hierarchy is clearly connected to the corresponding
increase in the logic’s expressiveness. Our second family of spatial log-
ics consists of formalisms that are capable of reasoning about distances
in metric spaces. Some of these logics will contain S4u and, therefore,
combine topological reasoning with reasoning about distances. These
logics are also computationally robust, with the typical complexity be-
ing ExpTime.

The introduction to temporal logic systems in Sec. 4 is much shorter,
as we only consider two approaches to logic modelling of time: time as
a linear discrete sequence of time points or snapshots, and time as a
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tree-like structure of such snapshots representing some aspects of non-
determinism. Other flows of time, say, continuous time, are not dis-
cussed, but pointers to the literature are provided.

Having introduced the logical systems for space and time, in Sec. 5 we
discuss general combination principles—requirements and constraints for
the operator + in (1.1)—which will guide us when designing combined
spatio-temporal systems. Then, in Sec. 6 and 7, we use these principles
to construct spatio-temporal logics out of the components introduced in
Sec. 3 and 4. As before, the emphasis of this investigation is on the trade-
off between the expressive power and the complexity of reasoning. We
shall discover, in particular, that unlike the ‘robust’ component logics,
their spatio-temporal hybrids turn out to be much more sensitive to
seemingly minor changes in expressiveness.

In Sec. 8, we consider a somewhat different paradigm of spatio-tempo-
ral models and languages for reasoning about them: here we formalise
spatio-temporal reasoning within the framework of dynamical systems
based on topological and metric spaces with continuous and isometric
functions, respectively. As logics for dynamical systems are discussed in
detail elsewhere in this Handbook (see Ch. ??), we concentrate here on
the connection between the spatio-temporal systems introduced before
and the dynamical systems perspective. It will turn out that in some
cases the connections between the two approaches are so strong that
results can be mutually imported from one area to the other.

Finally, in Sec. 9, we briefly discuss the relation between spatio-
temporal logics and other temporalised formalisms, for example first-
order temporal logics and temporal epistemic logics.

The reader who considers computational complexity less important
and is interested in logic modelling of (relativistic) space-time using clas-
sical first-order logic is referred to Ch. ??.

2. Static and changing spatial models

The intended models of standard spatial logics are usually based on
‘mathematical spaces’ such as (variations of) topological or metric spaces
and their relational or algebraic representations or abstractions. We will
consider many examples of such models and spaces in Sec. 3.1; more can
be found elsewhere in this Handbook. Meanwhile, in order to discuss
basic principles of introducing a temporal dimension into otherwise static
spatial models, we neglect the concrete structure of these ‘mathematical
spaces’ and concentrate on the generic properties of the models.

To represent spatial entities in models we require a countably infinite
supply of spatial variables (that is, unary predicates) p0, p1, . . . . Thus,



6

a generic spatial model can be thought of as a structure of the form

M = (S, pM
0 , p

M
1 , . . . ), (1.2)

where S is the underlying ‘mathematical space’ (say, a metric or topo-
logical space, or a structured collection of polygons on the Euclidean
plane) and the pM

i are interpretations of the spatial variables as subsets
of the domain of S.

Depending on the underlying spatial ontology, one can distinguish
between two types of models:

point-based models, where spatial objects are (explicitly or implic-
itly) thought of as consisting of sets of points, and

models with extended spatial entities as basic elements (say, regions
or intervals) together with certain relations between them.

Point-based spatial models. In a point-based model of the
form (1.2), the underlying ‘mathematical space’ S is a collection of
points equipped with ‘point-wise defined’ operators (like a metric or
topological space). Interpretations pM

i of spatial variables pi (that is,
subsets of the domain of S) represent spatial objects. Thus, a spa-
tial object is identified with the set of points it occupies. By imposing
various constraints on these interpretations—say, by allowing only poly-
gons, circles or regular closed connected sets—we can reflect the desired
requirements on the form of spatial objects.

Region-based spatial models. In a region-based model of the
form (1.2), spatial objects are represented as (unstructured) elements
of the underlying ‘space’ S. We may consider as the domain of S, for
instance, the collection of polygons on the Euclidean plane and com-
pletely forget about the plane itself. The ‘structure’ of spatial objects
is reflected then by certain relations among them (say, polygon x has
a common edge with polygon y) which should be specified in S (for
details and further references see Ch. ??, ?? and ?? of this Handbook).
Spatial variables are again interpreted as sets of elements of the domain
of S, for instance as a set of polygons approximating the map of the
U.K. (including the Isle of Wight, the Hebrides, and other islands), or
the singleton set containing (the polygonal approximation of) the Isle of
Man.

In this chapter we only consider point-based spatial models, although
some results and constructions can be generalised to region-based ones.
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Figure 1.1. Linear snapshot model with a moving spatial object.

Snapshot spatio-temporal models. The intended models of
temporal logics are supposed to represent the change of states—which,
in our case, should be spatial models (1.2)—over time, under actions,
etc. In most cases it makes sense to assume that space always remains
the same. Moreover, one can usually simulate expanding, shrinking or
varying space in some ‘sufficiently large’ constant space; see, e.g., (Gab-
bay et al., 2003). The motion of spatial objects can therefore be mod-
elled by changing the interpretations pM

i of spatial objects from one
state to another. (A different approach to modelling motion was taken
by Muller (1998), who considered a moving object as a single spatio-
temporal entity.)

There are many different time paradigms developed in philosophy,
mathematics, physics, computer science and other disciplines: linear and
branching, discrete and dense, point-based and interval-based, etc. (see,
e.g., Gabbay et al., 1994; Gabbay et al., 2000; Fisher et al., 2005). In this
chapter we mainly focus on the flow of time that can be represented by
the natural numbers (N, <), where < is the temporal precedence relation
between time points. In this case our generic snapshot spatio-temporal
model is simply an infinite sequence

M0 = (S, pM0

0 , pM0

1 , . . . ), M1 = (S, pM1

0 , pM1

1 , . . . ), . . . (1.3)
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of spatial models of the form (1.2) with the same space S; see Fig. 1.1.
In Sec. 4.2 and 6.2 we will briefly consider temporal and spatio-temporal
models with branching (tree-like discrete) time that can capture some
aspects of non-determinism. In either of these time paradigms the points
of time can be taken as primitive temporal entities, assumed to be gener-
ated by state transition systems (a standard computer science approach),
or by dynamical systems (a usual way in mathematics).

As an illustration let us consider the following example.

Spatial transition systems. Our main example running through-
out the chapter is a spatial transition system which describes the chang-
ing geography of the Earth as we see it every day in BBC’s weather
forecasts, say, in Ten O’Clock News. Every day the state of the map is
represented by a spatial model

M = (E, pM
0 , p

M
1 , . . . ),

where E is a suitable mathematical model of the Earth surface and each
pM

i is the space occupied by the geographical object modelled by pi

(either static as a town, a county or dynamic as a night frost or rainfall
area, etc.) on that day. Starting from a certain day in the past, we
can trace then the day-after-day changes that have happened till the
present moment. Depending on our philosophical, religious, etc. views
we can regard the future to be deterministic or not. In particular, we
can imagine that today’s state may evolve in many different ways.

In computer science, such scenarios are often described in terms of
state transition systems—spatial transition systems in our context—
which, in general, are tuples of the form

(S,�, µ,S, s0), (1.4)

where S is a nonempty set of states, � is a binary transition relation
on S without dead-ends (states without outgoing �), µ is a function
associating with each state s ∈ S a spatial model µ(s) of the form (1.2)
based on the same space S, and s0 is the initial state. Possible evolutions
(or transformations) of this initial state are sequences

s0 � s1 � s2 � . . . , (1.5)

where si ∈ S for all i ∈ N. Each of these evolutions obviously generates
a linear snapshot model

µ(s0), µ(s1), µ(s2), . . .

of the form (1.3). In the deterministic case (as in the second example
below) we have a single evolution. In general, however, the transition
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relation � of a spatial transition system can represent non-deterministic
rules. Then it generates a discrete tree of evolutions (1.5).

What precisely can be told about these models depends of course
on the concrete spatial and temporal logics we use. Here we give a
few examples of English statements about our ‘geographical transition
system’ that will be represented as spatio-temporal formulas in Sec. 5
and 6.1.

(A) If two clouds are disconnected now, then at the next moment they
either remain disconnected or become externally connected.

(B) Kaliningrad is disconnected from the EU until the moment when
Poland becomes a tangential proper part of the EU, after which
Kaliningrad and the EU are externally connected forever.

(C) The current position of a hurricane overlaps its position in an hour.

(D) If tomorrow object X is at the place where object Y is today, then
Y will have to move by tomorrow.

(E) The space occupied by Europe never changes.

(F) In two years the EU will be extended with Romania and Bulgaria.

(G) It will be raining over every part of England ever and ever again.

(H) If the Earth consists of water and land, and the space occupied by
water expands, then the space occupied by land shrinks.

(I) Two deserts that expand by at least a mile in all directions every
year must eventually intersect.

Reasoning tasks. We have not introduced yet any formal lan-
guages capable of talking and reasoning about spatio-temporal models—
they depend on the concrete spatial and temporal logics we combine as
well as the combination principles to be discussed later on in Sec. 5.
Nonetheless, it does make sense to consider on this abstract level the
main reasoning problems one might be interested in for some fictional
language L.

The most general and important problem we are going to consider is

satisfiability of spatio-temporal constraints.

Suppose that we have formulated a finite set Γ of L-formulas representing
constraints on possible spatio-temporal scenarios. Then we are facing
the following questions. Is this set Γ satisfiable (or consistent)? In
other words, does there exist a spatio-temporal model realising these
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constraints? And if so, how such a model may look like? For example,
can it be given by a finite transition system? Can it be based on a finite
space?

Of particular interest to us will be algorithmic properties of the sat-
isfiability problem. Is this problem decidable? That is, does there exist
an algorithm which is capable of deciding, given an arbitrary finite set Γ
of constraints, whether Γ is satisfiable? Are finite sets of satisfiable con-
straints recursively enumerable? What is the computational (worst-case)
complexity of the satisfiability problem?

Note that the deduction (or entailment) problem ‘given a finite set Γ
of constraints and an L-formula ϕ, decide whether ϕ holds in all spatio-
temporal models where Γ holds?’ is usually reducible to the satisfiability
problem.

The satisfiability problem can be restricted to certain classes of L-
formulas and constraints. Here is a typical example. We describe the be-
haviour of spatial transition systems by imposing some local constraints
Γ which specify possible initial states and transitions from each given
state to the next ones. This is done in some sublanguage Lloc of L. We
can also specify (by means of Lloc-formulas) states with some desirable
property ϕ or some ‘bad’ property ψ. And then we are interested in the
algorithmic properties of

the reachability problem relative to Lloc: ‘is it the case that every
model where constraints Γ hold contains a state satisfying ϕ?’ or

the safety problem relative to Lloc: ‘is it the case that no model
where constraints Γ hold contains a state satisfying ψ?’

In the extreme case, when Lloc is expressive enough to describe (up
to isomorphism) any particular spatial transition system, checking for
reachability, safety or some other properties are instances of classical
model checking problems (see, e.g., Clarke et al., 2000, and references
therein).

3. Spatial logics

In this section we introduce the ‘mathematical spaces’ and spatial
logics capable of talking and reasoning about these spaces that will serve
as the spatial components of our spatio-temporal formalisms.

We consider spatial logics of two types: (i) those that can repre-
sent and reason about topological relations among spatial objects, and
(ii) those that can additionally take into account distances between ob-
jects. The former are interpreted over topological spaces and the latter
over metric (or more generally, distance) spaces. The choice of these
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logics is motivated by the following reasons. First, topological and met-
ric spaces belong to the most important and well-understood structures
representing space. Reasoning about topological relations between re-
gions such as ‘X is externally connected to Y ’ or ‘X is tangential proper
part of Y ’ has proved to be one of the most successful approaches to
qualitative spatial knowledge representation and reasoning (KR&R) in
artificial intelligence; see, e.g., (Cohn and Hazarika, 2001) and references
therein. Extensions of ‘topo-logics’ with distance operators like ∃≤aX
giving the a-neighbourhood of X or X ⇔ Y giving the set of points that
are closer to X than to Y are becoming another interesting research
stream (Kutz et al., 2003; Wolter and Zakharyaschev, 2003; Wolter and
Zakharyaschev, 2005a) that is especially close to the authors’ hearts.
Other important aspects of space such as, e.g., orientation have been
considered as well; however, no combinations with temporal logics have
been constructed so far. We believe that the approach to combining
spatial logics of topological and metric spaces with temporal ones to
be presented later on in this chapter can be extended to other spatial
formalisms as well.

3.1 Metric and topological spaces

Metric spaces. A metric space is a pair (∆, d), where ∆ is a
nonempty set (of points) and d is a function from ∆ × ∆ into the set
R≥0 (of non-negative real numbers) satisfying the following axioms

identity of indiscernibles: d(x, y) = 0 iff x = y, (1.6)

symmetry : d(x, y) = d(y, x), (1.7)

triangle inequality : d(x, z) ≤ d(x, y) + d(y, z), (1.8)

for all x, y, z ∈ ∆. The value d(x, y) is called the distance between points
x and y. Given a metric space (∆, d), a point x ∈ ∆ and a nonempty
Y ⊆ ∆, define the distance d(x, Y ) between x and Y by taking

d(x, Y ) = inf{d(x, y) | y ∈ Y }.

As usual, d(y, ∅) = ∞. The distance d(X,Y ) between two nonempty
sets X and Y is

d(X,Y ) = inf{d(x, y) | x ∈ X, y ∈ Y }.

Distance spaces. Although acceptable in many cases, the defined
concept of metric space is not universally applicable to all interesting
measures of distance between points, especially those used in everyday
life. Consider, for instance, the following two examples:
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(i) If d(x, y) is the flight-time from x to y then, as we know it too
well, d is not necessarily symmetric, even approximately (just take a
plane from London to Tokyo and back).

(ii) Often we do not measure distances by means of real numbers but
rather using more fuzzy notions such as ‘short,’ ‘medium’ and ‘long.’ To
represent these measures we can, of course, take functions d from ∆×∆
into the subset {1, 2, 3} of R≥0 and define short := 1, medium := 2,
and long := 3. So we can still regard these distances as real numbers.
However, for measures of this type the triangle inequality (1.8) does not
make sense (short plus short can still be short, but it can also be medium
or long).

Spaces (∆, d) satisfying only the axiom (1.6) are called distance spaces.

Topological spaces. A topological space is a pair (U, I) in which
U is a nonempty set, the universe of the space, and I is the interior
operator on U satisfying the Kuratowski axioms: for all X,Y ⊆ U ,

I(X ∩ Y ) = IX ∩ IY, IX ⊆ IIX, IX ⊆ X and IU = U.

The operator dual to I is called the closure operator and denoted by C:
for every X ⊆ U , we have CX = U − I(U −X). Thus, IX is the interior
of a set X, while CX is its closure. X is called open if X = IX and
closed if X = CX. The complement of an open set is closed and vice
versa. The boundary of a set X ⊆ U is defined as CX − IX. Note that
X and U −X have the same boundary.

Topological spaces are often (equivalently) defined as pairs (U,O),
where O is a family of (open) subsets of U such that O is closed under
arbitrary unions and finite intersections.

Metric spaces and topology. Each metric space (∆, d) gives rise
to the interior operator Id on ∆: for all X ⊆ ∆,

IdX = {x ∈ X | ∃ε > 0 ∀y (d(x, y) < ε→ y ∈ X)}.

The pair (∆, Id) is called the topological space induced by the metric
space (∆, d). The dual closure operator Cd in this space can be defined
by the equality

CdX = {x ∈ ∆ | ∀ε > 0 ∃y ∈ X d(x, y) < ε}.

We briefly remind the reader of a few standard examples of metric
and topological spaces that will be used in what follows.
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Euclidean spaces. The one-dimensional Euclidean space is the set
of real numbers R equipped with the following metric on it

d1(x, y) = |x− y|.

Let X ⊆ R. A point x ∈ R is said to be interior in X if there is some
ε > 0 such that the whole open interval (x− ε, x+ ε) belongs to X. The
interior IX of X is defined then as the set of all interior points in X. It
is not hard to check that (R, I) is the topological space induced by the
Euclidean metric d1. Open sets in (R, I) are (possibly infinite) unions of
open intervals (a, b), where a ≤ b. The closure of (a, b), for a < b, is the
closed interval [a, b], with the end points a and b being its boundary.

In the same manner one can define n-dimensional Euclidean spaces
based on the universes Rn with the metric

dn(x, y) =
√

∑n
i=1(xi − yi)

2,

where x and y are n-dimensional vectors (x1, . . . , xn) and (y1, . . . , yn),
respectively (in the definition of interior points x one should take n-
dimensional ε-neighbourhoods of x).

Metric spaces on graphs. Another well known example is metric
spaces on graphs: the distance between two nodes of a graph is defined
as the length of the shortest path between them.

Aleksandrov spaces. A topological space is called an Aleksandrov
space (Alexandroff, 1937) if arbitrary (not only finite) intersections of
open sets are open. Aleksandrov spaces are closely related to quasi-
ordered sets, that is, pairs G = (V,R), where V is a nonempty set and
R a transitive and reflexive relation on V . Every such quasi-order G

induces the interior operator IG on V : for X ⊆ V ,

IGX = {x ∈ X | ∀y ∈ V (xRy → y ∈ X)}.

In other words, the open sets of the topological space TG = (V, IG)
are the upward closed (or R-closed) subsets of V . The minimal neigh-
bourhood of a point x in TG (that is, the minimal open set to contain
x) consists of all those points that are R-accessible from x. It is well-
known (see, e.g., Bourbaki, 1966) that TG is an Aleksandrov space and,
conversely, every Aleksandrov space is induced by a quasi-order.

For various generalisations of metric and topological spaces (like semi-
metrics, closure spaces and digital topology) see Ch. ??.
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3.2 Topo-logics

In this section, we introduce and discuss a number of logical for-
malisms which can represent and reason about topological relations
among spatial objects interpreted over topological spaces. Our choice of
logics was guided by two criteria: (i) they should be sufficiently expres-
sive to represent interesting and useful topological knowledge as iden-
tified in the qualitative spatial reasoning community; (ii) on the other
hand, reasoning with such logics should be decidable and, if possible, of
low computational complexity. Another important constraint on logics
in the framework described in Sec. 2 is that change in time is modelled by
changing the extensions of unary predicates representing spatial objects.

The most developed and systemically studied spatial logics satisfying
our criteria are fragments of a ‘propositional’ logic in which ‘proposi-
tional variables’ (= unary predicates) denote spatial objects, and topo-
logical relations among them are represented by means of the interior and
closure operators, the universal and existential quantifiers over space, as
well as the Booleans. This logic, originally introduced as a modal logic,
is known as S4u. As we shall see below, it can be regarded as the logic
of topological spaces providing a common roof to some other formalisms
developed by the spatial community such as the RCC-8 or 9-intersection
region connection calculi (where topological relations between regions
are regarded as primitive).

Our exposition basically follows (Gabelaia et al., 2005a) where the
reader can find more details, references and proofs. For historical refer-
ences and motivation see Ch. ?? of this Handbook.

Modal logic of topological spaces. S4u is the well known propo-
sitional modal logic S4 extended with the universal modalities. The
‘pedigree’ of S4 is quite unusual. It was introduced independently by
Orlov (1928), Lewis in (Lewis and Langford, 1932), and Gödel (1933),
without any intention to reason about space. Orlov and Gödel under-
stood it as a logic of ‘provability’ (in order to provide a classical inter-
pretation for the intuitionistic logic of Brouwer and Heyting) and Lewis
as a logic of necessity and possibility, that is, as a modal logic. That
it can be regarded as the logic of topological spaces was discovered by
Stone (1937), Tarski (1938), Tsao-Chen (1938) and McKinsey (1941).

In the spatial context it is useful to distinguish between spatial terms
and spatial formulas of S4u as explained below. Spatial terms are ex-
pressions of the form:

τ ::= pi | τ | τ1 u τ2 | τ1 t τ2 | Iτ | Cτ, (1.9)

where
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the pi are spatial variables,

, u and t are the standard Boolean operators (to be interpreted
by the set-theoretic complement, intersection and union),

I and C are the interior and closure operators, respectively (they
correspond to the box and diamond of the modal logic S4 but are
denoted differently to emphasise their topological nature).

A topological model is a structure of the form

M = (T, pM
0 , p

M
1 , . . . ), (1.10)

where T = (U, I) is a topological space and pM
i ⊆ U for all i. The

extension (or interpretation) τM of an arbitrary spatial term τ in M is
defined inductively by taking:

τM = U − τM, (τ1 u τ2)
M = τM

1 ∩ τM
2 , (Iτ)M = IτM,

(τ1 t τ2)
M = τM

1 ∪ τM
2 and (Cτ)M = CτM.

To be able to express how spatial terms τ1 and τ2 are related to each
other we require (at least) the atomic formula τ1 v τ2 with the obvious
intended meaning: (the extension of) τ1 is a subset of (the extension of)
τ2. By taking Boolean combinations of such atoms, we arrive at what
will be called spatial formulas (or S4u-formulas):

ϕ ::= τ1 v τ2 | ¬ϕ | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2,

where the τi are spatial terms. Formally, the language of S4u as defined
above is weaker than the standard one, say, from (Goranko and Passy,
1992). However, one can easily show that they have precisely the same
expressive power: see, e.g., (Hughes and Cresswell, 1996) or (Aiello and
van Benthem, 2002).

Spatial formulas can be either true or false in topological models. The
truth-relation M |= ϕ—a spatial formula ϕ is true in a topological model
M—is defined in the following way:

M |= τ1 v τ2 iff τM
1 ⊆ τM

2 ,

M |= ¬ϕ iff M 6|= ϕ,

M |= ϕ1 ∧ ϕ2 iff M |= ϕ1 and M |= ϕ2,

M |= ϕ1 ∨ ϕ2 iff M |= ϕ1 or M |= ϕ2.

Clearly, the traditional universal modalities ∀ and ∃ of S4u are express-
ible in the above language: ∀τ can be regarded as an abbreviation for
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(> v τ) and ∃τ for ¬(τ v ⊥), where > and ⊥ are constant terms de-
noting the whole space and the empty set, respectively. In what follows
we will also freely use two other ‘atomic’ formulas τ1 = τ2 and τ1 6= τ2
standing for (τ1 v τ2) ∧ (τ2 v τ1) and ¬(τ1 = τ2), respectively.

Say that a spatial formula ϕ is satisfiable (in a class K of topological
models) if there is a topological model M (from K) such that M |= ϕ. A
spatial formula ϕ is satisfiable in a class of topological spaces if there is a
topological model M based on a space from this class such that M |= ϕ.

This seemingly simple spatial language S4u can express rather com-
plex relations between sets in topological spaces. For example, the for-
mula

(q v p) ∧ (p v Cq) ∧ (p 6= ⊥) ∧ (Iq = ⊥)

says that a set q is dense in a nonempty set p, but has no interior. As
an example one can take q to be the rationals Q and p to be R in the
Euclidean space (R, I).

In the following theorem we collected the most important facts about
S4u; for proofs and discussions see, e.g., (Nutt, 1999; Areces et al., 2000)
and references therein.

Theorem 1.1 (i) A spatial formula is satisfiable iff it is satisfiable in
an Aleksandrov space.

(ii) S4u enjoys the exponential finite model property in the sense that
every satisfiable spatial formula ϕ is satisfiable in a topological space
whose size is at most exponential in the size of ϕ.

(iii) Satisfiability of spatial formulas in topological models is PSpace-
complete.

The language of the modal logic S4 mentioned above coincides with
the language of S4u-terms. Say that a spatial term (= S4-formula) is
satisfiable if there is a topological model where the term is interpreted as
a nonempty set. Although being of the same computational complexity
as S4 (which is also PSpace-complete), the logic S4u is more expressive.
For example, spatial formulas can distinguish between arbitrary and
connected topological spaces (we remind the reader that a topological
space is connected if its universe cannot be represented as the union of
two disjoint nonempty open sets). Consider the formula

(Cp v p) ∧ (p v Ip) ∧ (p 6= ⊥) ∧ (p 6= >) (1.11)

saying that (the extension of) p is both closed and open, nonempty
and does not coincide with the whole space. It can only be satisfied in
a model based on a disconnected topological space, while all satisfiable
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Figure 1.2. Regular closure.

S4-terms are satisfied in connected (e.g., Euclidean) spaces. For we have
the following result (McKinsey and Tarski, 1944):

Theorem 1.2 An S4-formula is satisfiable iff it is satisfiable in any of
(and so in all) Rn, n > 0.

Another example illustrating the expressive power of S4u is the for-
mula

(p 6= ⊥) ∧ (p v Cp) ∧ (p v Cp) (1.12)

defining a nonempty set p such that both p and its complement p have
empty interiors. In fact, the second and the third conjuncts say that
both p and p consist of boundary points only.

Regions = regular closed sets. In qualitative spatial KR&R, it is
quite often assumed that spatial terms can only be interpreted by regular
closed (or open) sets of topological spaces (see, e.g., Davis, 1990; Asher
and Vieu, 1995; Gotts, 1996). One of the reasons for imposing this
restriction is to exclude from consideration such ‘pathological’ sets as
in (1.12). Recall that a set X is regular closed if X = CIX, which
clearly does not hold for any set satisfying (1.12). Another reason is
to ensure that the space occupied by a physical body is homogeneous
in the sense that it does not contain parts of ‘different dimensionality.’
For example, the one-dimensional curve in Fig. 1.2 disappears from the
subset X of the Euclidean plane (R2, I) if we form the set CIX. The
latter is regular closed because CICIX = CIX, for every X and every
topological space.

In this section, we will consider several fragments of S4u dealing with
regular closed sets. From now on we will call such sets regions.

RCC-8. Perhaps the best known language devised for speaking
about regions is RCC-8 which was introduced in the area of Geographical
Information Systems (Egenhofer and Franzosa, 1991; Smith and Park,
1992) and as a decidable subset of Region Connection Calculus RCC
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(Randell et al., 1992). The syntax of RCC-8 contains region variables
r, s, . . . and eight binary predicates:

DC(r, s) — regions r and s are disconnected,

EC(r, s) — r and s are externally connected,

EQ(r, s) — r and s are equal,

PO(r, s) — r and s partially overlap,

TPP(r, s) — r is a tangential proper part of s,

NTPP(r, s) — r is a nontangential proper part of s,

the inverses of the last two—TPPi(r, s) and NTPPi(r, s),

which can be combined using the Boolean connectives.
The arguments of the RCC-8 predicates, that is, region variables, are

interpreted by regular closed sets—i.e., regions—of topological spaces.
The following was shown in (Renz, 1998; Renz and Nebel, 1999):

Theorem 1.3 (i) Every satisfiable RCC-8 formula is satisfiable in any
of Rn, for n ≥ 1 (with region variables interpreted by connected regions
only, if n ≥ 3).

(ii) The satisfiability problem for RCC-8 formulas in topological models
is NP-complete.

The expressive power of RCC-8 is rather limited. It only operates
with ‘simple’ regions and does not distinguish between connected and
disconnected ones, regions with and without holes, etc. (Egenhofer and
Herring, 1991). Nor can RCC-8 represent complex relations between
more than two regions. Consider, for example, three countries (say,
Russia, Lithuania and Poland) such that not only each one of them is
adjacent to the others, but there is a point where all the three meet (see
Fig. 1.3). It can easily be shown that a ternary predicate like

EC3(Russia,Lithuania,Poland) (1.13)

cannot be expressed in RCC-8.
To analyse possible ways of extending RCC-8, it will be convenient to

view it as a fragment of S4u (that RCC-8 can be embedded into S4u

was first shown by Bennett (1994); we present here a slightly different
embedding and the purpose of changes will become clear in the context
of BRCC-8 and RC). Observe first that, for every spatial variable p, the
spatial term

CIp (1.14)
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Figure 1.3. Russia, Lithuania and Poland.

is interpreted as a region (i.e., a regular closed set) in every topological
model. So with every region variable r of RCC-8 we can associate the
spatial term %r = CIpr, where pr is a spatial variable representing r, and
then translate the RCC-8 predicates into spatial formulas by taking

EC(r, s) = ¬(%r u %s = ⊥) ∧ (I%r u I%s = ⊥),

DC(r, s) = (%r u %s = ⊥),

EQ(r, s) = (%r v %s) ∧ (%s v %r),

PO(r, s) = ¬(I%r u I%s = ⊥) ∧ ¬(%r v %s) ∧ ¬(%s v %r),

TPP(r, s) = (%r v %s) ∧ ¬(%s v %r) ∧ ¬(%r v I%s),

NTPP(r, s) = (%r v I%s) ∧ ¬(%s v %r)

(TPPi and NTPPi are the mirror images of TPP and NTPP, respectively).
It should be clear that as a result we obtain the following:

Theorem 1.4 An RCC-8 formula is satisfiable in a topological space iff
its translation into S4u defined above is satisfiable in the same topological
space.

This translation shows that in RCC-8 any two regions can be related
only in terms of truth/falsity of atomic spatial formulas of the form

(%1 u %2 = ⊥), (I%1 u I%2 = ⊥), (%1 v %2) and (%1 v I%2),

where %1 and %2 are atomic region terms, that is, spatial terms of the
form (1.14). This observation suggests two ways of increasing the ex-
pressive power of RCC-8:

(i) by allowing the formation of complex region terms from atomic
region terms, and

(ii) by allowing more ways of relating them (i.e., richer languages of
atomic spatial formulas).

From now on we will not distinguish between a region variable r

and the atomic region term %r representing it, and use expressions like
DC(r, s) and (%r u %s = ⊥) as synonymous.
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BRCC-8. The language BRCC-8 of (Wolter and Zakharyaschev,
2000; see also Balibiani et al., 2004) extends RCC-8 in direction (i).
It uses the same eight binary predicates as RCC-8 and allows not only
atomic regions but also their intersections, unions and complements. For
instance, in BRCC-8 we can express the fact that a region (say, the Swiss
Alps) is the intersection of two other regions (Switzerland and the Alps
in this case):

EQ(SwissAlps,Switzerland u Alps). (1.15)

We can embed BRCC-8 into S4u by using almost the same translation
as in the case of RCC-8. The only difference is that now, since Boolean
combinations of regular closed sets are not necessarily regular closed,
we should prefix compound spatial terms with CI. In this way we can
obtain, for example, the spatial term

CI (Switzerland uAlps)

representing the Swiss Alps. In the same manner we can treat other
set-theoretic operations, which leads us to the following definition of
Boolean region terms:

% ::= CIp | CI% | CI(%1 u %2) | CI(%1 t %2).

Thus BRCC-8 can be regarded as a syntactically restricted subset of
S4u-formulas. It follows from the above definition that Boolean region
terms denote precisely the members of the well-known Boolean algebra
of regular closed sets.

It is of interest to note that Boolean region terms do not increase the
complexity of reasoning in arbitrary topological models: the satisfiability
problem for BRCC-8 formulas is still NP-complete. However, it becomes
PSpace-complete if all intended models are based on connected spaces
(BRCC-8 can distinguish between connected and disconnected spaces be-
cause we can express that regions r1 and r2 are nonempty non-tangential
proper parts of a region s 6= >, and the union of r1 and r2 is precisely s:

∧

i=1,2

(

¬DC(ri, ri) ∧ NTTP(ri, s)
)

∧ NTTP(s, s′) ∧ EQ(r1 t r2, s).

To satisfy this formula, it suffices to take a discrete topological space
with three points. But if these constraints are satisfied then both s and
its complement are open and nonempty, which means that the space
cannot be connected.)

On the other hand, BRCC-8 allows some restricted comparisons of
more than two regions as, e.g., in (1.15). Nevertheless, as we shall see
below, ternary relations like (1.13) are still unavailable in BRCC-8: they
require different ways of comparing regions; see (ii).
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RC. Egenhofer and Herring (1991), proposed to relate any two
regions in terms of the 9-intersections—3 × 3-matrix specifying empti-
ness/nonemptiness of all (nine) possible intersections of the interiors,
boundaries and exteriors of the regions. Recall that, for a region X,
these three disjoint parts of the space (U, I) can be represented as

IX, X ∩ (U − IX) and U −X,

respectively. By generalising this approach to any finite number of re-
gions, we obtain the fragment RC of S4u: its terms are defined as follows

% ::= CIp | CI% | CI(%1 u %2) | CI(%1 t %2),

τ ::= % | I% | τ | τ1 u τ2 | τ1 t τ2,

and spatial formulas are constructed from atoms of the form τ1 v τ2
using the Booleans (as in the full S4u). In other words, in RC we can
define relations between regions in terms of inclusions of sets formed by
using arbitrary set-theoretic operations on regions and their interiors.
However, nested applications of the topological operators are not allowed
(an example where such applications are required can be found below).

Clearly, both RCC-8 and BRCC-8 are fragments of RC. Moreover,
unlike BRCC-8, the language of RC allows us to consider more complex
relations between regions. For instance, the ternary relation required
in (1.13) can now be defined as follows:

EC3(r1, r2, r3) = ¬(%r1
u %r2

u %r3
= ⊥) ∧ (I%r1

u I%r2
= ⊥) ∧

(I%r2
u I%r3

= ⊥) ∧ (I%r3
u I%r1

= ⊥).

Another, more abstract, example is the formula

%1 u · · · u %i u I%′1 u · · · u I%′j u %′′1 u · · · u %′′
k

u I%′′′1 u · · · u I%′′′n 6= ⊥

which says that

regions %1, . . . , %i meet somewhere inside the region occupied
jointly by all %′1, . . . , %

′
j, but outside the regions %′′1 , . . . , %

′′
k and

not inside %′′′1 , . . . , %
′′′
n .

Although RC is more expressive than both RCC-8 and BRCC-8, rea-
soning in this language is still of the same computational complexity
(Gabelaia et al., 2005a):

Theorem 1.5 The satisfiability problem for RC-formulas in arbitrary
topological models is NP-complete.
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Figure 1.4. Satisfying EC(Russia, Poland) and EC3(Russia,Lithuania,Poland) in 2-
and 3-brooms.

The proof follows from the fact that every satisfiable RC-formula can be
satisfied in an Aleksandrov space that is induced by a disjoint union of
n-brooms—i.e., quasi-orders of the form depicted in Fig. 1.4. Topolog-
ical spaces of this kind have a rather primitive structure satisfying the
following property:

(rc) only the roots of n-brooms can be boundary points, and the min-
imal neighbourhood of every boundary point—i.e., the n-broom
containing this point—must contain at least one internal point
and at least one external point.

For example, spatial formula (1.12) cannot be satisfied in a model with
this property, and so it is not in RC.

Given a satisfiable RC-formula ϕ, we can always satisfy it in a model
of this kind the size of which is a polynomial (in fact, quadratic) in
the length of ϕ, and so we have a nondeterministic polynomial time
algorithm. Actually, the proof is a straightforward generalisation of the
complexity proof for BRCC-8 (Wolter and Zakharyaschev, 2000): the
only difference is that in the case of BRCC-8 it was sufficient to consider
2-brooms (which were called forks). This means, in particular, that
ternary relation (1.13)—which is satisfiable only in a model with an
n-broom, for n ≥ 3—is indeed not expressible in BRCC-8 (see Fig. 1.4).

Remark 1.6 In topological terms, n-brooms are examples of so-called
door spaces where every subset is either open or closed. However, the
modal theory of n-brooms defines a wider and more interesting topo-
logical class known as submaximal spaces in which every dense subset is
open. Submaximal spaces have been around since the early 1960s and
have generated interesting and challenging problems in topology. For
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Figure 1.5. Model satisfying formula (1.16).

a survey and a systematic study of these spaces see (Arhangel’skii and
Collins, 1995) and references therein.

RC
max. One could go even further in direction (ii) and impose no

restrictions whatsoever on the ways of relating Boolean atomic region
terms. This leads us to the maximal fragment RCmax of S4u in which
spatial terms are interpreted by regular closed sets. The syntax of its
spatial terms is defined as follows:

τ ::= CIp | τ | τ1 u τ2 | τ1 t τ2 | Iτ | Cτ

and spatial formulas are constructed as in S4u. To understand the dif-
ference between RCmax and RC, consider the following RCmax-formula

(

CIq1 u ICIq1 6= ⊥
)

∧
((

CIq1 u ICIq1
)

v C
(

ICIq1 uCIq2 u ICIq2
))

. (1.16)

It says that the boundary of CIq1 is not empty and that every neigh-
bourhood of every point in this boundary contains an internal point of
CIq1 that belongs to the boundary of CIq2 (compare with property (rc)
above). The simplest Aleksandrov model satisfying this formula is of
depth 2 (whereas n-brooms are of depth 1); it is shown in Fig. 1.5.

The price we have to pay for this expressivity is that the complexity
of RCmax is the same as that of full S4u (Gabelaia et al., 2005a):

Theorem 1.7 The satisfiability problem for RCmax-formulas is PSpace-
complete.

This logic can also be regarded as a fragment of S4u with all variables
interpreted by regular closed sets.
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S4u with component counting. There are many ways of increas-
ing the expressive power of S4u itself. For instance, Pratt-Hartmann
(2002) proposes an extension with component counting. We remind the
reader that a subset X of a topological space (U, I) is said to be con-
nected if there do not exist two sets Y1, Y2 ⊆ U such that X ⊆ Y1 ∪ Y2,
X ∩ Yi 6= ∅, for i = 1, 2, and X ∩ CY1 ∩ CY2 = ∅. Intuitively, connected
sets can be thought of as consisting of ‘one piece.’ Then a component of
a set X is a maximal connected subset of X. For example, the subset X
of the Euclidean plane (R2, I) in Fig. 1.2 has only one component and so
is connected, whereas its regular closure CIX is not connected and has
two components.

The language T CC of (Pratt-Hartmann, 2002) extends the set of
atomic spatial formulas of S4u with the following construct:

c≤kτ,

where τ is a spatial term (as on p. 14) and k ∈ N. The formula c≤kτ is
true iff the interpretation of τ has at most k components. In particular,
c≤1τ is true iff τ is connected and ¬c≤kτ is true iff τ has at least k + 1
components (sometimes denoted by c≥k+1τ). This extension turns out
to be quite expressive: for example, the T CC-formula

(

c≤1p1 ∧ c≤1p2 ∧ (p1 u p2 6= ⊥)
)

→ c≤1(p1 t p2)

says that the union of two connected intersecting sets is also connected
(here, ϕ1 → ϕ2 is an abbreviation for ¬ϕ1∨ϕ2). As usual, the increased
expressivity results in higher complexity. The following was proved by
Pratt-Hartmann (2002):

Theorem 1.8 The satisfiability problem for T CC-formulas in topologi-
cal models is NExpTime-complete for the binary coding of the numerical
parameters.

To conclude this section, we summarise the inclusions between the
(propositional) spatial languages introduced above:

RCC-8 $ BRCC-8 $ RC $ RCmax $ S4u $ T CC.

3.3 Logics of distance spaces

Suppose now that we are interested in spatial logics that are capable
of reasoning about spatial models based on various distance spaces, i.e.,
models of the form

M = (D, pM
0 , p

M
1 , . . . ), (1.17)

where D = (∆, d) is a distance space introduced in Sec. 3.1. If D is actu-
ally a metric space then we can still use S4u or its fragments interpreted
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on the topological space induced by D. However, the topological interior
and closure operators Id and Cd only deal with points that are ‘infinitely
close’ to the given spatial object (cf. the definitions in Sec 3.1). Being
equipped with the distance function over the space, we can extend (or
replace) qualitative topological reasoning by means of reasoning about
distances between spatial objects. In addition to (or instead of) opera-
tors interpreted by the topological interior and closure, we can introduce
operators capable of expressing, say, that the distance from a region X
to a region Y is not more than 17.

Following the ‘operator-based’ approach from topological logic, we
arrive then to languages with ‘bounded quantifiers’ like ∃<a ‘somewhere
at distance < a’ or ∀<b

>a ‘everywhere within distance d for a < d < b,’
where a and b are some numbers from R≥0 (or rather Q≥0 to avoid the
problem of representing the reals).

Given a spatial model M of the form (1.17), we interpret such opera-
tors in the natural way:

(∃<aτ)M = {x ∈ ∆ | ∃y (d(x, y) < a ∧ y ∈ τM)},

(∃>aτ)M = {x ∈ ∆ | ∃y (d(x, y) > a ∧ y ∈ τM)},

(∀<b
>aτ)

M = {x ∈ ∆ | ∀y (a < d(x, y) < b→ y ∈ τM)},

etc.

Before introducing formal languages based on these operators, it is worth
having a closer look at some of them. One might be tempted to assume
that the ‘doughnut’-operator ∃<b

>a can be expressed via ∃<b and ∃>a by
the equivalence ∃<b

>aτ = ∃<bτ u ∃>aτ . Fig. 1.6 shows that this is not
the case. In the figure, we depict the regions ∃<2X, ∃>1.9X and ∃<2

>1.9X
for the region X consisting of the two black boxes. In particular, of all
points on the plane only those in the white diamond in Fig. 1.6 (b) do
not belong to ∃>1.9X. ∃<2

>1.9X is ∃<2X without the three white areas in

Fig. 1.6 (c). As follows from this example, ∃<2
>1.9X 6= ∃<2X u ∃>1.9X.

In our discussion of languages for distance spaces we will formulate
most results for metric spaces only. The reader is invited to consult the
literature cited below to obtain detailed information about the behaviour
of those languages over more general distance spaces and over Euclidean
spaces.

Full ‘modal’ logic of distance spaces. The logic MS of distance
spaces with the operators ∃=a, ∃<a, ∃>a, ∃<b

>a (and their duals ∀=a, ∀<a,
etc.) interpreted as defined above was introduced and analysed in (Kutz
et al., 2003). Formally the spatial terms of this logic are defined as
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Figure 1.6. Distance operators.

follows:

τ ::= pi | {`i} | τ | τ1 u τ2 | ∃=aτ | ∃<aτ | ∃>aτ | ∃<b
>aτ,

where a, b ∈ Q≥0 with a < b, and the `i are location constants (or
nominals) interpreted by single points, so that the {`i} are interpreted
by singleton sets. As before, the formulas are constructed from atoms
of the form τ1 v τ2 using the Booleans (¬, ∧, etc.); we use τ1 = τ2 as an
abbreviation for τ1 v τ2 ∧ τ2 v τ1.

Considering first the expressive power of MS, one can show that over
models of the form (1.17) based on metric spaces it is as expressive as the
two-variable fragment of first-order logic with equality, individual con-
stants, unary predicate symbols pi(x) corresponding to spatial variables,
and binary relation symbols

d(x, y) < a, d(x, y) = a,

for a ∈ Q≥0, which are interpreted in metric spaces in the obvious
way (Kutz et al., 2003). Moreover, the translation between the two lan-
guages is effective.

This expressive completeness result indicates already that MS is in-
deed quite expressive. Analysing its computational properties, Kutz et al.
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(2003) proved that the satisfiability problem for MS-formulas over arbi-
trary metric spaces is undecidable. In fact, the following much stronger
theorem holds:

Theorem 1.9 No algorithm can decide whether an arbitrarily given
MS-formula all of whose distance operators are of the form ∃<a

>0, for
a ∈ N>0, is satisfiable in a model based on a metric space.

The proof of this result is based on the observation that one can ‘enforce’
the N ×N grid using the ‘punctured’ centres of circles provided by ∃<a

>0.
It is worth noting that in contrast to the undecidability result above,

the satisfiability problem for MS-formulas in arbitrary distance spaces
and symmetric distances spaces is decidable. This observation follows
from the standard translation of MS into the two-variable fragment
of first-order logic (which is decidable in NExpTime) and the fact that
reflexivity and symmetry of relations can be expressed in first-order logic
using two variables only. This argument does not work for satisfiability
in metric spaces because the triangle inequality cannot be expressed in
first-order logic with two variables.

The logic with ∃≤a and ∃>a. Without the doughnut operators
MS often becomes decidable and has the finite model property with
respect to the intended models, that is, a formula satisfiable in a (pos-
sibly infinite) metric model is satisfiable in a finite metric model. For
example, denote by MS≤,> the fragment of MS with spatial terms of
the form

τ ::= pi | {`i} | τ | τ1 u τ2 | ∃≤aτ | ∃>aτ,

where a ∈ Q≥0. Kutz et al. (2003) proved that this logic has the finite
model property and that the satisfiability problem for its formulas is de-
cidable in NExpTime under the unary coding of parameters. Actually,
this result was improved in (Wolter and Zakharyaschev, 2005b):

Theorem 1.10 The satisfiability problem for MS≤,>-formulas in met-
ric spaces is ExpTime-complete under the unary coding of numeric pa-
rameters in distance operators.

The complexity of MS≤,>-satisfiability under the binary coding of
parameters remains an open research problem.

The logic with ∃≤a and ∃<a. Another interesting fragment of
MS is based on the operators ∃<a and ∃≤a (Wolter and Zakharyaschev,
2003). The spatial terms of the resulting logic MS≤,< are defined as
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follows:

τ ::= pi | {`i} | τ | τ1 u τ2 | ∃≤aτ | ∃<aτ,

where a ∈ Q>0 (by including 0 in the parameter set we would not in-
crease the expressive power of the language, but some formulations may
become awkward). The logic MS≤,< has the finite model property, and
ExpTime-completeness can now be proved even for the binary coding
of parameters:

Theorem 1.11 The satisfiability problem for MS≤,<-formulas in met-
ric spaces is ExpTime-complete under both unary and binary coding of
parameters in distance operators.

The crucial observation in the proof of this result is that (modulo the
interpretation of nominals) the logic turns out to be complete with re-
spect to tree metric spaces, a feature not shared by the languages consid-
ered above. Completeness with respect to tree metric spaces makes this
language also amenable to tableau-based decision procedures (Wolter
and Zakharyaschev, 2003) which are not yet available for the language
MS≤,>. An intriguing fact is that the fragments with only strict oper-
ators ∃<a and only non-strict ones ∃≤a behave similarly in the following
sense:

Theorem 1.12 Let ϕ be a formula whose only distance operators are
of the form ∃<a. Let ϕ′ be the result of replacing occurrences of ∃<a in
ϕ with ∃≤a. Then ϕ is satisfiable in a metric space iff ϕ′ is satisfiable
in a metric space.

Of course, in the theorem above one cannot always choose the same
metric space. In fact, it is worth noting that the language MS≤,< is
properly more expressive than its fragments with only the operators ∃<a

and ∃≤a, respectively. Namely, using both operators we can say that the
distance between two sets p and q is precisely a:

(

p u ∃≤aq 6= ⊥
)

∧
(

p u ∃<aq = ⊥
)

.

‘Modal’ logics of metric and topology. The logics of met-
ric spaces we have considered so far can represent certain knowledge
about distances between spatial objects, but are not suitable for reason-
ing about the induced topology. To see this for MS≤,> and MS≤,<,
recall that both of them have the finite model property: every satisfiable
formula is satisfiable in a finite metric space. Thus, these languages can-
not distinguish between finite and infinite metric spaces. On the other
hand, every finite metric space induces the trivial topology in which ev-
ery set is both closed and open. It follows that every satisfiable formula
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is satisfiable in a metric space with a trivial topology and that therefore
the languages cannot represent anything interesting about the topology
induced by a metric space. A similar argument can be used to show that
MS itself cannot be used for representing topological knowledge.

To be able to reason about both metric and topology we can combine
one of the metric logics above with one of the topo-logics considered
in Sec. 3.2. Only one such combination has been investigated in detail
so far: the extension of S4u with the metric operators ∃<a and ∃≤a of
MS≤,< (Wolter and Zakharyaschev, 2005a). The terms of the resulting
language we call MT are defined as follows:

τ ::= pi | τ | τ1 u τ2 | ∃≤aτ | ∃<aτ | Iτ | Cτ,

where a ∈ Q>0. Notice that MT does not contain contain nominals {`i}.
Although it would be definitely useful to have nominals in the language,
we do not include them into the signature because nothing is known
about the algorithmic properties of MT extended by nominals. Unlike
its parts S4u and MS≤,<, the logic MT does not have the finite model
property with respect to metric spaces because the topology induced by
a finite metric space is trivial. For example, the term

p u Cp

is not satisfiable in any finite metric model, yet it is satisfiable in every
Euclidean space.

It turns out, however, that the intended metric models for this logic
can be represented in the form of relational structures (or Kripke frames),
which can be regarded as partial descriptions of metric models. This rep-
resentation theorem—in fact a generalisation of the McKinsey and Tarski
(1944) representation theorem for topological spaces—reduces reasoning
with infinite metric models to reasoning with finite relational models and
can be used to show the following

Theorem 1.13 The satisfiability problem for MT -formulas in metric
spaces is ExpTime-complete under the binary coding of parameters.

To understand the interaction between the topological and distance
operators, it is worth taking a look at the axioms required to describe this
interaction. It turns out that to axiomatise the MT -formulas that are
valid in all metric models, we need the axioms governing the behaviour
of the distance operators, those for the topological operators, and only
two axioms where both are involved:

Cτ v ∃<aτ,

∃<aCτ v ∃<aτ.
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The logic MT is also decidable over the real line, where it has been
considered in the framework of reasoning about real-time systems (Hir-
shfeld and Rabinovich, 1999). It becomes undecidable, however, when
we take R2 as the intended metric space.

Closer operator. The representation of knowledge about distances
in (fragments of) MS is restricted to absolute distances. In particular,
in MS it is not possible to compare distances between spatial objects
without estimating the absolute values for the distances. A purely com-
parative approach to representing and reasoning about distance spaces
would need predicates like ‘X is closer to Y than it is to Z’ which are
quite common in our everyday life (‘the body was in the middle of the
room, rather closer to the door than to the window’). In the frame-
work of spatial logics we have considered so far this predicate can be
represented using the binary closer operator ⇔ with the following inter-
pretation in distance models M = (D, pM

0 , p
M
1 , . . . ):

(τ1 ⇔ τ2)
M = {x ∈ ∆ | d(x, τM

1 ) < d(x, τM
2 )}. (1.18)

In other words, τ1 ⇔ τ2 is (interpreted by) the set containing those ob-
jects of ∆ that are ‘closer’ (or ‘more similar’) to τ1 than to τ2. Formally,
the terms of the language CSL of comparative distances (or similarity)
are defined as follows:

τ ::= pi | τ | τ1 u τ2 | τ1 ⇔ τ2.

The language CSL turns out to be quite powerful. Using it we can
express the interior (and so the closure) operator by taking

Iτ = > ⇔ τ .

Indeed, by the definition above, we have

(Iτ)M = {x ∈ ∆ | d(x,∆ − τM) > 0}.

We can also express the existential (and so the universal) modality:

∃τ = τ ⇔ ⊥

because d(x, ∅) = ∞. Thus, CSL contains S4u and can be regarded as a
qualitative spatial formalism for reasoning about comparative distances
and topology. One more interesting operator is

τ1 � τ2 = (τ1 ⇔ τ2) u (τ2 ⇔ τ1)

which defines the set of points located at the same distance from τ1 and
τ2.
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Figure 1.7. Closer operator and Voronoi tessellation.

As a small illustrating example consider the formula

p v (q ⇔ r) ∧ q v (r ⇔ p) ∧ r v (p ⇔ q) ∧ p 6= ⊥. (1.19)

One can readily check that it is satisfiable in a three-point non-symmetri-
cal model, say, in the one depicted below where the distance from x to
y is the length of the shortest directed path from x to y.
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The following result has been obtained in (Sheremet et al., 2006):

Theorem 1.14 The satisfiability problem for CSL-formulas in metric
spaces is ExpTime-complete.

Investigating the algorithmic properties of the combination of CSL
with fragments of MS in order to facilitate reasoning about topology,
comparative distances, and absolute distances in one formalism is a chal-
lenging research problem. Define the terms of the language CMS by
taking

τ ::= pi | {`i} | τ | τ1 u τ2 | ∃≤aτ | ∃<aτ | τ1 ⇔ τ2,
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where a ∈ Q>0. CSL enriched with nominals can represent Voronoi tes-
sellations of various spaces. For example, let location constants `1, `2, `3
be interpreted by the points a1, a2, a3 of R2 in Fig. 1.7. Then the CMS-
terms

{`i} ⇔ {`j} t {`k}, for {i, j, k} = {1, 2, 3},

define the Voronoi tessellation of R2 corresponding to the set {a1, a2, a3}.
Nothing is known about the algorithmic properties of CMS inter-

preted over arbitrary metric spaces. However, if one considers metric
spaces satisfying the min condition

d(X,Y ) = min{d(x, y) | x ∈ X, y ∈ Y },

for all sets X and Y , then the topology induced by the metric space
is trivial again and CMS can represent knowledge about comparative
and absolute distances only (note that, by the definition, d(X,Y ) =
inf{d(x, y) | x ∈ X, y ∈ Y }). Then we have the following result of
(Sheremet et al., 2005a, 2005b):

Theorem 1.15 The satisfiability problem for CMS-formulas in metric
spaces with the min-condition is ExpTime-complete under the binary
coding of parameters.

Rather unexpectedly, over the real line R the logic CSL turns out to
be undecidable, which can be proved by reduction of the (undecidable)
10th Hilbert problem on the existence of an algorithm solving arbitrary
Diophantine equations; see, e.g., (Barwise, 1977) and references therein.
A proof can be found in (Sheremet et al., 2005b).

4. Temporal logics

Now we briefly remind the reader of the two basic propositional tem-
poral logics that will be used for speaking about the temporal dimension
of spatio-temporal models introduced in Sec. 6: the linear temporal logic
LT L and its branching time extension BT L (a variant of the well-known
computation tree logic CT L∗).

4.1 Linear temporal logic LT L

Temporal logic, as opposed to first-order logic, is an approach to rea-
soning about time (and computation) using temporal connectives and
without explicit quantification over time. Its most popular variant,
the propositional linear temporal logic LT L, is successfully applied in
model checking as well as program verification and specification; see e.g.,
(Clarke et al., 2000; Manna and Pnueli, 1992; Manna and Pnueli, 1995).
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The intended flow of time for LT L is any strict linear order (W,<)
with time points w ∈W and the precedence relation <. In what follows
we will be mainly interested in (N, <) and arbitrary finite flows of time.
LT L-formulas are constructed from propositional variables p0, p1, . . .
using the Booleans and the binary temporal operator U (‘until’), the
intended meaning of which is as follows:

ϕ U ψ stands for ‘ϕ holds true until ψ holds.’

Other temporal connectives like 3F (‘sometime in the future’), 2F (‘al-
ways in the future’), and © (‘at the next moment’) can be defined via
U :

3Fϕ = > U ϕ, 2Fϕ = ¬3F¬ϕ and ©ϕ = ⊥ U ϕ.

It should be noted that we adopt the ‘strict’ interpretation of temporal
operators, i.e., 2F , 3F and U do not not include the present. We will
use abbreviations 2

+
Fϕ and 3

+
Fϕ for 2Fϕ∧ϕ and 3Fϕ∨ϕ, respectively.

(Note also that ‘past’ operators like ‘since’ and ‘sometime in the past’
can be added to the language of LT L as well. Here we only deal with
the ‘future fragment’ of LT L, as this restriction does not influence any
of the results throughout.)

To evaluate LT L-formulas in a flow of time F = (W,<), we have to
specify first at which time points the propositional variables hold. An
LT L-model is a structure of the form

M = (F, pM
0 , p

M
1 , . . . ),

where pM
i ⊆W for all i. The truth-relation (M, w) |= ϕ, or simply w |= ϕ

if understood (which says that an LT L-formula ϕ holds at moment w
in M) is defined as follows (we omit the clauses for the Booleans):

w |= pi iff w ∈ pM
i ,

w |= ϕU ψ iff there is v > w such that v |= ψ and u |= ϕ for all
u ∈ (w, v),

where (w, v) = {u ∈ W | w < u < v}. Other temporal operators (ex-
pressible via U) are interpreted according to their meaning. For example,

w |= ©ϕ iff w+1 |= ©ϕ (where w+1 is the immediate successor
of w),

w |= 3Fϕ iff there is v > w such that v |= ϕ.

A formula ϕ is satisfiable if there is a model M over (N, <) and a time
point n ∈ N such that (M, n) |= ϕ. We say that ϕ is finitely satisfiable
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if there is a finite strict linear order F and a model M over it such that
(M, n) |= ϕ for some n in F.

The following results are due to Sistla and Clarke (1985):

Theorem 1.16 The satisfiability problem for LT L-formulas is PSpace-
complete. The problem whether an LT L-formula is finitely satisfiable is
PSpace-complete as well.

This complexity result might suggest that the expressive power of
LT L is rather limited. Surprisingly enough, this is not the case. Ac-
cording to the famous Kamp theorem (Kamp, 1968), the propositional
temporal language with both ‘until’ and ‘since’ is as expressive as the
monadic first-order language over (N, <) (which of course is considerably
more succinct than LT L).

We will also consider the fragment LT L2 of LT L containing only 2F

and 3F as its temporal operators. The following results are due to Ono
and Nakamura (1980) and Sistla and Clarke (1985):

Theorem 1.17 The satisfiability problem for LT L2-formulas is NP-
complete. The problem whether an LT L2-formula is finitely satisfiable
is NP-complete as well.

4.2 Branching time temporal logic BT L

The temporal logic considered above is not able to express the follow-
ing statements (due to Aristotle):

it is necessary that there will be a sea-battle tomorrow,

it is possible that there will be a sea-battle tomorrow.

LT L can only say

©sea-battle, i.e., there will be a sea-battle tomorrow.

In other words, it does not distinguish between possible, actual, or nec-
essary future developments. A natural way to formalise assertions of this
sort is to add two more operators A and E to the temporal language and
understand them as quantifiers over ‘possible histories.’ For example, by
interpreting E as ‘it is possible that’ and A as ‘it is necessary that,’ we
can express the two Aristotle’s statements by the formulas A©sea-battle
and E©sea-battle, respectively.

Numerous extensions of LT L by means of such kind of operators
have been introduced in various disciplines, in particular, computer sci-
ence and artificial intelligence (Lamport, 1980; Clarke and Emerson,
1981; Emerson and Halpern, 1986) or philosophy (Prior, 1968); for more
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references and discussions see (Thomason, 1984; Gabbay et al., 2000).
Here we only outline the essential ideas using the simple extension of
LT L with A and E; it will be called BT L, branching temporal logic.

Having fixed the language, we need to choose time structures that
could allow for non-trivial interpretations. Clearly, if the flow of time is
linear then at every moment the future is fixed, and so both Aϕ and Eϕ
are equivalent to ϕ. The flows of time we need should be able to represent
different evolutions of history. Since, on the other hand, it is natural to
assume that, in contrast to the future, the past is fixed, trees as defined
below appear to be perfect structures for modelling different histories
(in particular, they correspond to the discrete tree of evolutions (1.5) of
spatial transition systems).

A tree is a flow of time F = (W,<) containing a point r, called the root
of F, for which W = {v | r < v} ∪ {r}, and such that for every w ∈ W ,
the set {w | v < w} is well-founded and (strictly) linearly ordered by <.
A history in F is a maximal linearly <-ordered subset of W . Finally, an
ω-tree is such a tree where every history is order isomorphic to (N, <).

By a branching time model we understand a structure

B = (F,H, pB
0 , p

B
1 , . . . ),

where F = (W,<) is an ω-tree, H a set of histories in F—the set of
possible flows of time in the model—and pB

i ⊆W for all i. Formulas are
evaluated relative to pairs (h,w) consisting of an actual history h ∈ H
and a time point w ∈ h. In such a pair (h,w), the temporal operators are
interpreted along the actual history h as in the linear time framework,
while the operators E and A quantify over the set of all histories

H(w) = {h′ ∈ H | w ∈ h′}

coming through w. More precisely, the truth-relation |= between models
B with pairs (h,w) and BT L-formulas ϕ is defined inductively in the
following way (we omit the clauses for the Booleans):

(h,w) |= pi iff w ∈ pB
i ,

(h,w) |= ϕ U ψ iff there is v ∈ h such that v > w, (h, v) |= ψ
and (h, u) |= ϕ for all u ∈ (w, v),

(h,w) |= Eϕ iff there is h′ ∈ H(w) such that (h′, w) |= ϕ,

(h,w) |= Aϕ iff (h′, w) |= ϕ for all h′ ∈ H(w).

Note that propositional variables are assumed to have no temporal as-
pect in the sense that their truth-values at (h,w) do not depend on the
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actual history h. We say that a BT L-formula is satisfiable if there exists
a branching time model B such that (B, h, w) |= ϕ for some history
h ∈ H and some time point w ∈ h.

The branching time model defined above reflects the ‘Ockhamist view’
of time. We refer the reader to (Burgess, 1979; Zanardo, 1996; Gabbay
et al., 2000; Reynolds, 2002) for more information about this and re-
lated approaches. Here we only note that our branching time logic is
closely related to the computational tree logics CT L and CT L∗ that are
widely used in model checking and program verification and specification
(Clarke and Emerson, 1981; Emerson and Halpern, 1986; Clarke et al.,
2000).

It might seem more natural to quantify with E and A over the set of
all histories in the tree rather than its subset H. But then we would
be forced to accept possibly unintended histories in F as possible flows
of time. Here is an example of a formula satisfiable in a branching time
model as defined above, but not in a branching time model in which H
is the set of all histories. The formula is a conjunction of the following
three BT L-formulas:

P(Scotland,UK), (1.20)

A3F2FEC(Scotland,UK), (1.21)

A2
+
F

(

P(Scotland,UK) → E©P(Scotland,UK)
)

. (1.22)

The first formula means that at present Scotland is part of the U.K. The
second says that in all possible histories, there will be a time starting
from which Scotland will be externally connected to the U.K. And the
last formula claims that in all possible histories, it is always the case that
if Scotland is part of the U.K. then it is still possible that it will remain
in U.K. for at least one more day. (Since we do not have a combined
spatio-temporal language yet, the RCC-8 predicates P(Scotland,UK) and
EC(Scotland,UK) should be regarded as a propositional variable and its
negation, respectively.)

The following result can be obtained using a reduction to satisfiability
in CT L∗ (see Hodkinson et al., 2001):

Theorem 1.18 The satisfiability problem for BT L-formulas is decid-
able in 2ExpTime.

It seems that the lower bound for the computational complexity of
this problem is still unknown.

Remark 1.19 Similarly to RCC-8, instead of time points one can take
extended time entities, i.e., intervals, as primitives. This approach to
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temporal representation and reasoning reflects the fact that certain as-
sertions can be evaluated only at periods of time (e.g., ‘John often drinks
beer’). It was developed by Allen (1983; 1984), who observed, in partic-
ular, that relative positions of any two intervals i and j of a strict linear
order can be described by precisely one of the thirteen basic interval
relations: before(i, j), meets(i, j), overlaps(i, j), during(i, j), starts(i, j),
finishes(i, j), their inverses (before(j, i), meets(j, i), etc.), and equal(i, j).

We will not consider interval temporal logics in this chapter and refer
the interested reader to (Vilain et al., 1989; Blackburn, 1992; Gabbay
et al., 2000; Goranko et al., 2004).

5. Combination principles

We have defined how the intended models of spatio-temporal log-
ics (yet to be constructed) should look like. We have also identified
a stock of available spatial and temporal logics to be integrated into
spatio-temporal formalisms. However, we have not discussed yet how
the component logics are supposed to interact with each other.

The expressive power (and consequently the computational complex-
ity) of combined spatio-temporal formalisms obviously depends on three
parameters:

the expressiveness of the spatial component,

the expressiveness of the temporal component, and

the interaction between the two components allowed in the com-
bined logic.

Regardless of the chosen component languages, the minimum require-
ment for a spatio-temporal combination to be useful is the following:

The language should be able to express changes in time of
the truth-values of purely spatial propositions.

(PC)

Languages satisfying (PC) can capture, for instance, some aspects of
the continuity of change principle (see, e.g., Cohn, 1997) such as ex-
ample (A) from Sec 2: ‘if two clouds are disconnected now, then at the
next moment they either remain disconnected or become externally con-
nected.’ A natural way to express this principle is to encode it into the
following ‘spatio-temporal formula’

DC(cloud1, cloud2) → ©DC(cloud1, cloud2) ∨ ©EC(cloud1, cloud2). (A)

We may also need to impose some constrains on possible movements
of spatial objects by comparing their positions at different moments of
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Figure 1.8. Temporal operators on regions.

time. For example, the continuity principle above can be further refined
by saying that the current cloud’s position overlaps with its positions at
the next two moments, which requires a spatio-temporal formula of the
form

O(cloud,©cloud) ∧ O(cloud,©©cloud), (1.23)

where the predicate O(r, s) means that regions r and s have at least one
common interior point; it can be expressed as a disjunction of all RCC-8
relations but DC and EC (see Fig. 1.8 where ©X at moment n denotes
the state of X at moment n+ 1).

The difference between (A) and (1.23) is that in the former case we
apply temporal operators to spatial formulas, while in the latter to re-
gions.

Consider now example (G) from Sec. 2: ‘it will be raining over every
part of England ever and ever again.’ This gives rise to the formula

P(England,2F 3F Rain) (G)

where P(r, s) = TPP(r, s) ∨ NTPP(r, s) ∨ EQ(r, s). Formula (G) can be
understood as follows: all bits (points) of England will infinitely often
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occur in region Rain, but not necessarily all at the same time. Note that
the formula

2F3F P(England,Rain)

means that it will be raining over the whole England ever and ever again.
There is an essential difference between examples (1.23) and (G). In

the former, we want to control the movements of objects over a fixed
finite number of steps, while in the latter example we impose restrictions
on their ‘asymptotic’ behaviour. This leads us to two fundamental prin-
ciples which will be called local spatial object change principle (LOC)
and asymptotic spatial object change principle (AOC).

The language should be able to express changes or evolutions
of spatial objects over some fixed finite periods of time.

(LOC)

The language should be able to express changes or evolutions
of spatial objects over the whole duration of time.

(AOC)

In logical terms, (PC) refers to the change of truth-values of propositions,
while (LOC) and (AOC) to the change of extensions of predicates.

As we shall see later on in this chapter, different combination prin-
ciples result in spatio-temporal logics of different expressive power and
computational complexity.

6. Combining topo-logics with temporal logics

In this section we introduce and discuss various ways of combining
topo-logics and temporal logics. First we consider combinations with
(fragments of) linear temporal logic LT L and then with branching time
temporal logic BT L.

6.1 Combinations with linear temporal logic
LT L

First we construct ‘maximal’ combinations with (fragments of) LT L
meeting all three combination principles (PC), (LOC) and (AOC), and
see that such a straightforward approach results in undecidable logics.
Then we systematically weaken the component languages and their inter-
action. The result is a hierarchy of spatio-temporal logics whose com-
plexity ranges from NP via PSpace, ExpSpace and 2ExpSpace to
undecidable. All omitted proofs and further details can be found in
(Gabelaia et al., 2005a).

As outlined in the introduction, we represent the motion of spatial ob-
jects in time using the following kind of ‘snapshot’ models. A topological-
temporal model (a tt-model, for short) is a pair of the form M = (T,V),
where T = (U, I) is a topological space, and V, a valuation, is a map



40

associating with every spatial variable p and every time point n ∈ N
a set V(p, n) ⊆ U—the ‘space’ occupied by p at moment n. Such a
pair M = (T,V) is simply a shorthand for the representation (1.3) of
spatio-temporal models as a sequence of spatial models:

M0 = (T,V(p0, 0),V(p1, 0), . . . ), M1 = (T,V(p0, 1),V(p1, 1), . . . ), . . .

Combinations with (PC), (LOC) and (AOC). A ‘maximalist’
approach to constructing spatio-temporal logics is to allow unrestricted
applications of the Booleans, the topological and the temporal operators
to form spatio-temporal terms.

Denote by LT L × S4u the spatio-temporal language given by the
following definition:

τ ::= p | τ | τ1 u τ2 | τ1 t τ2 | Iτ | Cτ | τ1 U τ2,

ϕ ::= τ1 v τ2 | ¬ϕ | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | ϕ1 U ϕ2. (1.24)

Expressions of the form τ and ϕ will be called LT L×S4u terms and for-
mulas, respectively. Most of the languages we consider in this subsection
are fragments of LT L× S4u.

As before, we can introduce the temporal operators 2F , 3F , and ©

applicable to LT L × S4u formulas. Moreover, these operators can now
be used to form LT L× S4u terms: for example,

3F τ = > U τ, 2F τ = 3F τ and ©τ = ⊥ U τ,

where the intended meaning of ⊥ and > is the empty set and the whole
space, respectively.

LT L×S4u formulas are supposed to represent propositions speaking
about moving spatial objects represented by LT L × S4u terms. The
intended truth-values of propositions in tt-models can vary in time, but
do not depend on points of spaces. But how are we to understand
‘temporalised’ terms?

The meaning of ©τ should be clear: at moment n, it denotes the space
occupied by τ at the next moment n+ 1 (see (1.23) and Fig. 1.8). The
formula

EQ(©©EU,EU t Romania t Bulgaria) (F)

formalises sentence (F) from Sec. 2. It says that in two years the EU
(as it is today) will be extended with Romania and Bulgaria. Note that
©©EQ(EU,EU t Romania t Bulgaria) has a different meaning because
the EU may expand or shrink in a year. It is also not hard to formalise
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sentences (D), (E) and (H):

EQ(©X,Y) → ¬EQ(Y,©Y), (D)

2
+
F EQ(©Europe,Europe), (E)

2
+
F

(

EQ(Earth,W t L) ∧ EC(W,L)
)

∧ P(W,©W ) → P(©L,L). (H)

The intended interpretation of terms of the form 3F τ and 2F τ is
a bit more sophisticated. It reflects the standard temporal meanings of
propositions ‘3F x ∈ τ ’ and ‘2F x ∈ τ ,’ for all points x in the topological
space:

at moment n, term 3F τ is interpreted as the union of all spatial
extensions of τ at moments m > n;

at moment n, term 2F τ is interpreted as the intersection of all
spatial extensions of τ at moments m > n.

For example, consider Fig. 1.8 with moving cloud X depicted on it at
three consecutive moments of time, and supposeX does not change after
n+ 2. Then 3FX at n is the union of ©X and ©©X at n and 2FX at
n is the intersection of ©X and ©©X at n (i.e., ©X).

As another example, let us interpret the term 2F3F Rain occurring
in formula (G) on page 38:

3F Rain at moment n occupies the space where it will be raining
at some time points m > n (which may be different for different
places). 2F Rain at n occupies the space where it will always be
raining after n.

2F 3FRain at n is the space where it will be raining ever and ever
again after n, while 3F 2FRain comprises all places where it will
always be raining starting from some future moments of time.

Now, what can be the meaning of Rain USnow? Similarly to the readings
of 2F τ and 3F τ above, we adopt the following definition:

at moment n, the spatial extension of τ1 U τ2 consists of those
points x of the topological space for which there is m > n such
that x belongs to τ2 at moment m and x is in τ1 at all k whenever
n < k < m.

The past counterpart of U—i.e., the operator ‘since’ S—can be used
to say that the part of Russia that has been remaining Russian since
1917 is not connected to the part of Germany (Königsberg) that became
Russian after the Second World War (Kaliningrad):

DC(Russia S Russian Empire,Russia S Germany).
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Summing up, the valuation V in tt-models can be inductively ex-
tended to arbitrary LT L × S4u terms:

V(τ , n) = U − V(τ, n), V(τ1 u τ2, n) = V(τ1, n) ∩ V(τ2, n),

V(Iτ, n) = I V(τ, n), V(Cτ, n) = C V(τ, n),

V(τ1 U τ2, n) =
⋃

m>n

(

V(τ2,m) ∩
⋂

k∈(n,m)

V(τ1, k)
)

.

Then we also have:

V(3F τ, n) =
⋃

m>n

V(τ,m), V(2F τ, n) =
⋂

m>n

V(τ,m),

V(©τ, n) = V(τ, n+ 1).

The truth-values of LT L × S4u formulas in tt-models are defined as
follows:

(M, n) |= τ1 v τ2 iff V(τ1, n) ⊆ V(τ2, n),

(M, n) |= ¬ϕ iff (M, n) 6|= ϕ,

(M, n) |= ϕ1 ∧ ϕ2 iff (M, n) |= ϕ1 and (M, n) |= ϕ2,

(M, n) |= ϕ1 U ϕ2 iff there is m > n such that (M,m) |= ϕ2

and (M, k) |= ϕ1 for all k ∈ (n,m).

An LT L × S4u formula ϕ is called satisfiable if there exists a tt-model
M such that (M, n) |= ϕ for some time point n ∈ N.

Observe that LT L × S4u contains both LT L and S4u. At first sight
it may appear that the computational properties of this combination
should not be too bad—after all, its spatial and temporal components
are PSpace-complete. It turns out, however, that this is very far from
being the case:

Theorem 1.20 The satisfiability problem for LT L × S4u formulas in
tt-models is Σ1

1-complete.

It follows from Theorem 1.20 that if we strengthen the topological
component to T CC (by allowing terms of the form c≤kτ , see Sec. 3.2),
then the satisfiability problem for the resulting language LT L×T CC is
also Σ1

1-hard. However, Theorem 1.20 is proved by a reduction of the
Σ1

1-complete recurrent tiling problem (see Gabelaia et al., 2005b), and
the terms used in its proof can denote arbitrary (i.e., not necessarily
connected) sets. It would be interesting to know the complexity of the
satisfiability problem for LT L×T CC formulas in tt-models where spatial
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variables can be interpreted at each time point by connected sets or sets
containing at most k connected components for some fixed k.

One might conjecture that it is the use of the infinitary operators
U , 2F and 3F in the construction of LT L × S4u terms that makes
logics like LT L × S4u ‘over-expressive.’ Moreover, the whole idea of
tt-models based on an infinite flow of time may look counterintuitive in
the context of spatio-temporal representation and reasoning (unlike, say,
models used to represent the behaviour of reactive computer systems).

There are different approaches to avoid infinity in tt-models:

The most radical one is to allow only finite flows of time. A fi-
nite tt-model is a triple of the form M = (T,V, N), where T is a
topological space, N ∈ N, and V is a map associating with every
spatial variable p and every time point n ≤ N a subset V(p, n) of
the topological space T.

A more cautious approach is to impose the following finite state
assumption on models:

FSA Every spatial variable may have only finitely many possible
states (although it may change its states infinitely often).

Say that a (possibly infinite) tt-model (T,V) satisfies FSA if, for every
spatial variable p, there are finitely many sets A1, . . . , Am in the space T

such that {V(p, n) | n ∈ N} = {A1, . . . , Am}. (Such models can be used,
for instance, to capture periodic fluctuations due to season or climate
changes, say, a daily tide.)

One can actually show (see Gabelaia et al., 2005a) that an LT L×S4u

formula is satisfiable in a model with FSA iff it is satisfiable in a model
based on a finite (Aleksandrov) topological space.

Unfortunately, none of these ‘finitising’ approaches improves the com-
putational behaviour of the combinations too much. We can even try to
weaken the temporal component to LT L2 (by allowing only the tempo-
ral operators 2F and 3F in terms and formulas), and still we have:

Theorem 1.21 (i) The satisfiability problem for LT L2 ×S4u formulas
in (arbitrary) finite tt-models is undecidable.

(ii) The satisfiability problem for LT L2 × S4u formulas in tt-models
satisfying FSA is undecidable.

However, if we weaken the spatial component further, the combina-
tions can become decidable, with high but gradually decreasing com-
plexity. Recall the hierarchy of topo-logics from Sec. 3.2. It suggests
that next we should consider RCmax as the spatial component. In this
case LT L×RCmax terms τ are defined by

τ ::= CIp | τ | τ1 u τ2 | τ1 t τ2 | Iτ | Cτ | τ1 U τ2,
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and LT L × RCmax-formulas as in (1.24). Unfortunately, it is an open
problem whether the satisfiability problems for LT L ×RCmax-formulas
in arbitrary or in finite tt-models, or in tt-models satisfying FSA are
decidable.

Let us move one more step down and denote by LT L ×RC the lan-
guage given by the following definition:

% ::= CIp | CI% | CI(%1 u %2) | CI(%1 t %2) | CI(%1 U %2),

τ ::= % | I% | τ | τ1 u τ2 | τ1 t τ2

and formulas as in (1.24). Expressions of the form % will be called
LT L × RC region terms. Now the complexity of reasoning decreases
indeed:

Theorem 1.22 The satisfiability problem for LT L × RC formulas in
tt-models satisfying FSA, and in those based on (arbitrary) finite flows
of time is 2ExpSpace-complete.

The existence of a 2ExpSpace decision algorithm follows from the
fact that, similarly to the case of topo-logic RC (without a temporal
component), it is enough to deal with Aleksandrov topological spaces.
More precisely, it can be shown that an LT L×RC formula is satisfiable
in a tt-model with FSA iff it is satisfiable in a tt-model (T,V) where
T is an Aleksandrov space induced by a finite disjoint union of finite
brooms (cf. Theorem 1.5). The lower bound is established by showing
that ‘yardsticks’ of double-exponential length (similar to those used by
Stockmeyer, 1974; Halpern and Vardi, 1989) can be encoded by LT L×
RC formulas of polynomial length. These yardsticks can then be used to
encode any Turing machine computation over double-exponential space.

By restricting the language further we obtain LT L × BRCC-8:

ϕ ::= Q(%1, %2) | ¬ϕ | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | ϕ1 U ϕ2,

where the %i are LT L×RC region terms and Q ranges over (the trans-
lations of) the eight RCC-8 predicates.

Theorem 1.23 The satisfiability problem for LT L×BRCC-8 formulas
in tt-models with FSA, and those that are based on (arbitrary) finite
flows of time is ExpSpace-complete.

The exponential decrease in the complexity is due to the fact that
now we can have a bound (linear in the size of the given formula ϕ) on
the size of the brooms inducing the underlying Aleksandrov space of a
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tt-model in which an LT L × BRCC-8 formula ϕ is satisfied. The lower
bound can be proved by reduction of a 2n-corridor tiling problem.

Finally, by replacing the available region terms of LT L × BRCC-8
with

% ::= CIp | CI(%1 U %2)

we obtain the product LT L × RCC-8. The exact complexity of the
satisfiability problem for LT L×RCC-8 formulas in tt-models satisfying
FSA, and in (arbitrary) finite tt-models is not known. These problems
are PSpace-hard by Theorem 1.16 and in ExpSpace by Theorem 1.23.

It is also an open problem whether satisfiability of LT L×L formulas
in (arbitrary) tt-models is decidable, whenever L ∈ {RCC-8, BRCC-8,
RC, RCmax}.

Combinations with (PC) and (LOC). We can try to obtain
decidable spatio-temporal combinations over infinite time lines by omit-
ting the (AOC) principle and allowing only ‘local control’ of evolutions
of spatial objects. To begin with, let us consider the fragment LT L◦S4u

of LT L × S4u with terms of the form:

τ ::= p | τ | τ1 u τ2 | τ1 t τ2 | Iτ | Cτ | ©τ.

In other words, LT L◦S4u does not allow applications of temporal oper-
ators different from © to form terms (but they are still available as for-
mula constructors). This means that the language still satisfies (LOC),
but (AOC) is no longer available.

This fragment is definitely less expressive than full LT L × S4u. For
instance, on the one hand one can show that LT L◦S4u formulas do not
distinguish between arbitrary tt-models and those based on Aleksandrov
topological spaces. On the other hand, the set of LT L × S4u formulas
satisfiable in tt-models based on Aleksandrov spaces is a proper subset
of those satisfiable in arbitrary tt-models. Consider, for example, the
LT L × S4u formula

2F Ip v I2Fp.

One can readily see that it is true in every tt-model based on an Aleksand-
rov space, but its negation can be satisfied in a tt-model. For it suffices
to take the topology T = (R, I) with the standard interior operator I on
the real line, select a sequence Xn of open sets such that

⋂

n∈N
Xn is not

open, e.g., Xn = (−1/n, 1/n), and put U(p, n) = Xn.
However, even this seemingly weak interaction between topological

and temporal operators turns out to be dangerous:
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Theorem 1.24 The satisfiability problem for LT L◦S4u formulas in tt-
models is undecidable. It is undecidable as well for tt-models satisfying
FSA, and for (arbitrary) finite tt-models.

We can try to weaken again the topological component. The lan-
guage LT L ◦ RCmax can be obtained from LT L × RCmax by replacing
the constructor τ1 U τ2 with ©τ in the definition of terms. It is not
known whether this helps, that is, whether the satisfiability problem for
LT L ◦ RCmax-formulas in tt-models or in (arbitrary) finite tt-models is
decidable.

If we weaken the spatial component even further, then this kind of
combination turns out to be decidable. Consider the languages LT L ◦ L,
for L ∈ {RC, BRCC-8, RCC-8}, which differ from LT L × L only in the
following aspect: in the corresponding definition of region terms % the
constructor CI(%1 U %2) is replaced with CI©%. Then again we have a
hierarchy of gradually decreasing complexity:

Theorem 1.25 The satisfiability problem for LT L◦RC formulas in tt-
models is 2ExpSpace-complete. It is 2ExpSpace-complete as well for
tt-models satisfying FSA and for (arbitrary) finite tt-models.

Theorem 1.26 The satisfiability problem for LT L ◦ BRCC-8 formulas
in tt-models is ExpSpace-complete. It is ExpSpace-complete as well
for tt-models satisfying FSA and for (arbitrary) finite tt-models.

The proofs of Theorems 1.25 and 1.26 are essentially the same as those of
Theorems 1.22 and 1.23. The difference is that now the correspondence
between arbitrary satisfiability and satisfiability in tt-models based on
Aleksandrov spaces holds not only for tt-models satisfying FSA, but for
arbitrary tt-models as well.

Theorem 1.27 The satisfiability problem for LT L◦RCC-8 formulas in
tt-models is PSpace-complete.

The idea of the proof is to separate the topological and temporal parts of
a given formula, and then use available satisfiability checking algorithms
for the component logics (see also Theorem 1.28 below). In order to take
into account the interaction between the topological and temporal parts,
one has to use the so-called ‘completion property’ of RCC-8 (cf. Balbiani
and Condotta, 2002) with respect to a certain class C of models: given a
satisfiable set Φ of RCC-8 formulas and a model in C satisfying a subset
of Φ, one can extend this ‘partial’ model to a model in C satisfying the
whole Φ.

The exact complexity of the satisfiability problem for LT L ◦ RCC-8
formulas in tt-models satisfying FSA, and in (arbitrary) finite tt-models
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is not known. These problems are PSpace-hard by Theorem 1.16 and
in ExpSpace by Theorem 1.26.

Combinations with (PC) only. If we want to keep the complexity
low but to use an expressive topological component, then the interaction
between space and time has to be weakened. One way of doing this is
to consider combined languages in which the temporal operators can be
applied to spatial formulas but not to spatial terms. The resulting com-
binations will satisfy (PC), but neither (LOC) nor (AOC) is expressible.
(This way of ‘temporalising’ a logic was first introduced by Finger and
Gabbay, 1992).

Denote by LT L[S4u] the spatio-temporal language given by the fol-
lowing definition:

τ ::= p | τ | τ1 u τ2 | τ1 t τ2 | Iτ | Cτ,

ϕ ::= τ1 v τ2 | ¬ϕ | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | ϕ1 U ϕ2.

Note that the definition of LT L[S4u] terms coincides with the definition
of spatial terms in S4u which reflects the fact that LT L[S4u] cannot
capture (LOC) or (AOC). We have imposed no restrictions upon the
temporal operators in formulas—so the combined language still contains
LT L. (Clearly, S4u is a fragment of LT L[S4u].)

Theorem 1.28 The satisfiability problem for LT L[S4u] formulas in tt-
models and in (arbitrary) finite tt-models is PSpace-complete.

The proof of this theorem is based on the fact that the interaction
between spatial and temporal components of LT L[S4u] is rather limited.
In fact, for every LT L[S4u] formula ϕ one can construct an LT L formula
ϕ∗ by replacing every occurrence of a (spatial) subformula τ1 v τ2 in ϕ
with a fresh propositional variable pτ1,τ2 . Then, given an LT L-model
M for ϕ∗ (based on (N, <) or a finite flow of time) and a moment n, we
take the set

Φn = {τ1 v τ2 | (M, n) |= pτ1,τ2} ∪ {¬ (τ1 v τ2) | (M, n) |= ¬pτ1,τ2}

of spatial formulas. It is not hard to see that if Φn is satisfiable for
every n, then there is a tt-model satisfying ϕ (simply because extensions
of a spatial variable at different time moments are independent). Now,
to check whether ϕ is satisfiable, it suffices to use a suitable nondeter-
ministic algorithm (see, e.g., Sistla and Clarke, 1985) which guesses an
LT L-model for ϕ∗ and then, for each time point n, to check satisfiability
of Φn. This can be done using polynomial space in the length of ϕ.

Theorem 1.28 (together with Theorem 1.16) shows that the satisfia-
bility problem for each of the spatio-temporal logics of the form LT L[L],
where L ∈ {RCC-8, BRCC-8, RC, RCmax}, is also PSpace-complete.
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However, if—instead of LT L—we consider its NP-complete fragment
LT L2, the complexity of ‘temporalisations’ can even be lower. On the
one hand, by Theorems 1.1, 1.7 and 1.28, LT L2[S4u] and LT L2[RCmax]
are still PSpace-complete. On the other, by considering NP-complete
topological components, the same argument as in the proof of Theo-
rem 1.28 gives us:

Theorem 1.29 The satisfiability problem for LT L2[RC] formulas in
tt-models is NP-complete.

It follows from Theorem 1.29 that the satisfiability problems for the
weaker LT L2[RCC-8] and LT L2[BRCC-8] are NP-complete as well.

6.2 Combinations with branching time temporal
logic BT L

In the framework of linear time spatio-temporal logics, we can say, for
instance, that the U.K. will join the euro-zone: 3FP(UK,Eurozone). We
can also say that this will never happen. But we are not able to convey
the reality, viz., that both variants are possible, that is, something like

E3F P(UK,Eurozone) ∧ E¬2FP(UK,Eurozone). (1.25)

In this section we summarise the results of (Wolter and Zakharyaschev,
2002) on the combinations of the branching time temporal logic BT L
with the topo-logic BRCC-8.

The combined languages are interpreted in the following modification
of tt-models. A branching time topological model (a btt-model, for short)
is a quadruple M = (F,H,T,V), where F = (W,<) is an ω-tree, H a
set of histories in F, T = (U, I) a topological space, and V, a valuation,
is a map associating with every spatial variable p and every time point
w ∈ W a set V(p,w) ⊆ U . (Observe that according to this definition,
V(p,w)—the ‘space’ occupied by p at moment w—does not depend on
the actual history of events.)

As concerns the languages, for each choice of topological/linear-time
combination L ∈ {LT L[BRCC-8], LT L ◦ BRCC-8, LT L×BRCC-8}, we
have two options: to allow applications of A and E to L-formulas only,
or to both L-formulas and L-region terms. The resulting languages will
be denoted by Lb (the former option) and Lbx

(the latter one).
For example, (1.21), (1.22) and (1.25) are LT L[BRCC-8]b-formulas.

The following (LT L ◦ BRCC-8)bx

-formula

A2
+
F

(

EQ(Europe,©Europe) ∧ P(EU,Europe)
)

∧

P(Europe,E©EU) ∧ P(A©EU,EU)
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says that, whatever happens, the region occupied by Europe will always
remain the same and the EU will be part of Europe; moreover, every
part of Europe has a possibility to join the EU next year, while, on the
hand, what will certainly belong to the EU next year, is only part of the
EU as it is today.

Now the valuation V in btt-models can be inductively extended to
arbitrary region terms in a way similar to the linear case: we only have
to add a history as parameter. Given a region term %, a history h ∈ H,
and a time point w ∈ h, define the value V(%, h, w) of % at w relative to
h inductively by taking

V(CIp, h, w) = CIV(p,w), p a spatial variable,

V(CI%, h, w) = CI(U − V(%, h, w)),

V(CI(%1 u %2), h, w) = CI(V(%1, h, w) ∩ V(%2, h, w)),

V(CI(%1 t %2), h, w) = CI(V(%1, h, w) ∪ V(%2, h, w)),

V(CI(%1U%2), h, w) = CI
⋃

v>w, v∈h

(

V(%2, h, v)∩
⋂

u∈(w,v)

V(%1, h, u)
)

,

V(CIE%, h, w) = CI
⋃

h′∈H(w)

V(%, h′, w),

V(CIA%, h, w) = CI
⋂

h′∈H(w)

V(%, h′, w).

Now, for a formula ϕ and a pair (h,w), the truth-value of ϕ at (h,w) in
M is defined inductively as follows:

(M, h, w) |= Q(%1, %2) iff Q(V(%1, h, w),V(%2, h, w)) holds in
T, for RCC-8 predicates Q,

(M, h, w) |= ¬ϕ iff (M, h, w) 6|= ϕ,

(M, h, w) |= ϕ1 ∧ ϕ2 iff (M, h, w) |= ϕ1 and (M, h, w) |= ϕ2,

(M, h, w) |= ϕ1 U ϕ2 iff there is v > w, v ∈ h, such that
(M, h, v) |= ϕ2 and (M, h, u) |= ϕ1 for all u ∈ (w, v),

(M, h, w) |= Eϕ iff there is h′ ∈ H(w) such that (M, h′, w) |= ϕ,

(M, h, w) |= Aϕ iff for all h′ ∈ H(w), we have (M, h′, w) |= ϕ.

A formula ϕ is called satisfiable if there exists a btt-model M such that
(M, h, w) |= ϕ for some history h ∈ H and time point w ∈ h.
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Theorem 1.30 The satisfiability problem for (LT L◦BRCC-8)b formu-
las in btt-models is decidable.

No significant result on the computational complexity of this satisfia-
bility problem has been obtained yet.

As to satisfiability of Lbx

-formulas, we again face the problem of in-
finitary temporal operations on region terms. Now, besides the linear
temporal operators, the region terms can also be affected by the ‘branch’
operators A and E. In fact, at least for discrete topological spaces (i.e.,
spaces T = (U, I) in which I is the identity function) we have the follow-
ing negative result:

Theorem 1.31 The satisfiability problem for (LT L × BRCC-8)bx

for-
mulas in btt-models based on discrete topological spaces is undecidable.

We conjecture that the satisfiability problem for (LT L × BRCC-8)bx

formulas in btt-models based on arbitrary topological and Euclidean
spaces is undecidable as well.

A natural way to search for decidable variants of the undecidable logics
discussed above is to restrict the class of btt-models to those having
finite sets of histories and where each history satisfies the finite state
assumption. We conjecture that the satisfiability problem for (LT L ×
BRCC-8)bx

formulas in this kind of btt-models is decidable.

Remark 1.32 Temporalisations of RCC-8 and BRCC-8 with the help of
Allen’s interval calculus (see Remark 1.19) were considered in (Bennett
et al., 2002; Gerevini and Nebel, 2002; Gabbay et al., 2003).

7. Combining distance logics with temporal
logics

Unfortunately, not so much is known about temporal extensions of
logics of distance spaces. Of course, some of the ‘negative’ results from
Sec. 6 hold for similar combinations with those distance logics that con-
tain S4u as a sub-logic (for example, MT or CSL). The technique of
the proof of Theorem 1.28 can be used to show that the temporalisa-
tions LT L[L] of the logics L of distance spaces from Sec. 3.3 (where the
temporal operators can only be applied to formulas but not to spatial
terms) inherit the complexity of L (see the end of this section). And
finally, some of the methods developed to deal with products of modal
(in particular, temporal) logics (see Gabbay et al., 2003 and references
therein) can be applied to analyse the computational behaviour of com-
binations of LT L with distance logics like MS≤ which only contains
distance operators of the form ∃≤a (and their duals).
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Denote by LT L ×MS≤ the spatio-temporal language satisfying the
(PC), (LOC) and (AOC) principles and given by the following definition:

τ ::= pi | τ | τ1 u τ2 | τ1 t τ2 | ∃≤aτ | τ1 U τ2,

ϕ ::= τ1 v τ2 | ¬ϕ | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | ϕ1 U ϕ2.

As before, expressions of the form τ and ϕ are called LT L×MS≤ terms
and formulas, respectively.

A metric temporal model (mt-model, for short) is a pair of the form
M = (D,V), where D = (∆, d) is a metric space and V, a valuation, is
a map associating with each spatial variable p and each time instant n a
set V(p, n) ⊆ ∆. The valuation can be inductively extended to arbitrary
LT L ×MS≤ terms in a straightforward way:

V(τ , n) = ∆ − V(τ, n), V(τ1 u τ2, n) = V(τ1, n) ∩ V(τ2, n),

V(∃≤aτ, n) =
{

x ∈ ∆ | ∃y(d(x, y) < a ∧ y ∈ V(τ, n))
}

,

V(τ1 U τ2, n) =
⋃

m>n

(

V(τ2,m) ∩
⋂

k∈(n,m)

V(τ1, k)
)

.

The truth-values of LT L ×MS≤ formulas in mt-models are defined in
precisely the same way as for spatio-temporal logics from Sec. 6.1. As
before, we freely use the temporal operators ©, 3F and 2F (as well as
their non-strict versions 3

+
F and 2

+
F ).

As an example of an LT L × MS≤ formula, consider the following
formalisation of (I) from Sec. 2:

∧

i=1,2

((

deserti 6= ⊥
)

∧ 2
+
F

(

∃≤adeserti v ©deserti
))

→

3F 2F

(

desert1 u desert2 6= ⊥
)

.

It says that two nonempty deserts (say, the Kalahari and the Sahara)
increasing their size in all directions by at least some a ∈ Q>0 each year
will eventually intersect. Notice that this formula is valid in mt-models
based on Euclidean spaces, but not in models based on disconnected or
discrete metric spaces.

Unfortunately, the complexity of this combination of a PSpace-com-
plete and an ExpTime-complete logics turns out to be too high. Using
an almost straightforward encoding of the recurring tiling problem (see,
e.g., the proof of Theorem 11.1 in Gabbay et al., 2003) one can prove
the following:

Theorem 1.33 The satisfiability problem for LT L×MS≤ formulas in
mt-models is Σ1

1-complete.
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This result might suggest that combinations of LT L with MS≤ have
the same computational properties as combinations with S4u in Sec. 6.1.
However, this is not the case. To see the difference, let us consider the
problem of term satisfiability for both languages: a term τ is satisfiable if
there is a model M for the language where V(τ, n) is not empty for some
time moment n. It can be shown (similarly to the proof of Theorem 1.20)
that the satisfiability problem for LT L × S4u terms is Σ1

1-complete. In
the case of MS≤ the picture is slightly better—the problem is decidable
but not in time bounded by any ‘tower’ of exponents:

Theorem 1.34 The satisfiability problem for LT L × MS≤ terms in
mt-models is decidable, but not in elementary time.

The proof requires three ingredients. First, one can show (similarly to
the proof of Theorem 1.11) that any satisfiable LT L × MS≤ term is
satisfiable in an mt-model based on a tree metric space. This observa-
tion makes it possible to apply the methods developed to analyse the
product modal logic PTL2© × K. In particular, the decidability re-
sult is proved analogously to Theorem 13.6 from (Gabbay et al., 2003):
first, mt-models are represented in the form of quasimodels, and then
the existence of a quasimodel for a given term is encoded in monadic
second-order logic. The non-elementary lower bound can be established
by a polynomial reduction of the satisfiability problem for PTL2© ×K
(which is non-elementary by Theorem 6.37 and Claim 6.25 of Gabbay
et al., 2003) to satisfiability of LT L ×MS≤ terms.

It is worth noting that the language of LT L×MS≤ terms is ‘local’ in
the sense that every term refers to a bounded area of the metric space,
and the size of this area can be effectively computed. (In particular,
statement (I) refers to the whole space, and so cannot be expressed
in the language of LT L × MS≤ terms.) In fact, this is the crucial
observation required for the decidability result. LT L×MS≤ formulas,
on the contrary, can speak about the whole space which makes it possible
to simulate tilings.

In the same way one can explain the computational behaviour of the
combination LT L ◦ MS≤ satisfying both (PC) and (LOC), but not
(AOC). It is defined analogously to the spatio-temporal case by replacing
τ1 U τ2 with ©τ in the definition of terms:

τ ::= pi | τ | τ1 u τ2 | τ1 t τ2 | ∃≤aτ | ©τ.

The formulas of LT L ◦MS≤ are defined in the same way as above.
As Theorem 1.24 might suggest, the same negative result holds even

for this restricted combination:
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Theorem 1.35 The satisfiability problem for LT L ◦MS≤ formulas in
mt-models is undecidable.

On the other hand, LT L◦MS≤ terms are basically ‘harmless’ because
they can only speak about limited time, at most `(τ) time moments, to
be more precise (where `(τ) is the length of τ). So we have the following:

Theorem 1.36 The satisfiability problem for LT L◦MS≤ terms in mt-
models is ExpTime-complete under both unary and binary coding of
parameters in distance operators.

Finally, the temporalisations of distance logics satisfying only the
(PC) principle, and so containing no temporal operators in spatial terms,
inherit the higher complexity of the spatial component, which is proved
similarly to the proof of Theorem 1.28:

Theorem 1.37 The satisfiability problem for LT L[MS≤,<], LT L[MT ],
and LT L[CMS] formulas in mt-models is ExpTime-complete for both
unary and binary coding of parameters.

8. Logics for dynamical systems

The snapshot models and the corresponding spatio-temporal logics
discussed above are a convenient tool for representing and reasoning
about evolutions of spatial configurations of regions such as the political
(geographical, weather, etc.) map of the changing world, where we are
interested in keeping track of the relations between regions.

On the other hand, if we want to model how an object moves over an
otherwise stable space and keep track of its asymptotic trajectory then
different models of space and time may be preferable, namely models
corresponding to dynamical systems (see, e.g., Brown, 1976; Katok and
Hasselblatt, 1995).

A dynamical model is a pair of the form

A = (M, g), (1.26)

where M = (S, pM
0 , p

M
1 , . . . ) is a spatial model and g is a total function

on the space S. Often g is required to satisfy certain constraints de-
pending on the structure of S. For example, if S is a topological space,
then g is often required to be continuous or even a bijective continuous
and open mapping (that is, a homeomorphism).

In the framework of such models, we are interested in the orbits

Orbg(w) = {g(w), g2(w), . . . }

of certain points w from S (representing moving objects). The model
M describes a spatial environment in which w moves according to the
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rule (law) g. A typical question in the framework of dynamical models
is whether a point from a region pM

0 will eventually reach pM
1 without

visiting pM
2 , or whether the rule g is such that w will be returning to pM

1
infinitely often.

The aim of this section is to discuss the existing logics capable of talk-
ing about some aspects of dynamical models. In particular, we consider
the relation between the spatio-temporal logics above and logics for dy-
namical models. Before reading this section the reader is recommended
to have a look at Ch. ??.

Let us begin with two illuminative examples.

A physical system. Consider a physical system with a single
degree of freedom, say, a body having mass m and moving along some
axis. The movement of the body in a force field f(x, t) can be described
by the following system of differential equations:

ẋ(t) = v(t),

v̇(t) = f(x, t)/m,

where x(t) and v(t) are, respectively, the position and the velocity of
the body at time t. For every initial point (x0, v0) ∈ R2, the differ-
ential equations determine the trajectory π(x0,v0)(t) of the body (more
precisely, its position and velocity) that starts with the velocity v0 at
the position x0 and moves according to the above equations. The col-
lection of all those trajectories for different initial conditions form the
phase portrait of the differential equation (depicted in the left-hand side
of Fig. 1.9).

Now consider the function φ((x, v), t), called the flow of the equations,
defined by taking φ((x, v), t) = π(x,v)(t). Note that

φ((x, v), 0) = (x, v) and

φ((x, v), t + s) = φ(φ((x, v), t), s).

The graph of this function represents trajectories in R2×R and the phase
portrait can be considered as the projection of φ((x, v), t) onto R2; see
Fig. 1.9. Note also that φ((x, v), t) is continuous in all coordinates.

Given such a physical system, we usually want to know answers to
the following standard questions. Suppose that the initial conditions
(position and velocity) of the body are restricted by some set I ⊆ R2.
Is it the case that starting from any point of I the body will eventually
reach some point in another set F ? Will it be visiting F infinitely often?
Is it the case that the body will never hit some ‘danger zone’ D ⊆ R2?

A dynamical model (M, g) for the differential equations above can be
defined as follows. The underlying space S of M is the Euclidean plane
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Figure 1.9. Dynamical system.

R2. Let g(x, v) = φ((x, v), δ), for some fixed small time unit δ > 0. The
predicates pM

i can model the initial and final conditions I and F , the
danger zone D, etc. As g is easily seen to be continuous, (M, g) is a
dynamical model with a continuous function on R2. The three questions
above can then be formalised as whether we have

I ⊆
⋃

i>0

g−i(F ),

I ⊆
⋂

j>0

g−j
(

⋃

i>0

g−i(F )
)

,

I ∩
⋃

i>0

g−i(D) = ∅.

It is to be noted that, on the other hand, the flow φ((x, v), t) can be
regarded as a snapshot spatio-temporal model

M0, M1, . . . ,

where Mi =
(

S, g−i(pM
0 ), g−i(pM

1 ), . . .
)

, for i ≥ 0. The intuition behind
this definition is as follows: a point (x, v) belongs to a set Y ⊆ R2 at
time point i iff (x, v) is moved to Y by i consecutive applications of g,
that is, (x, v) ∈ g−i(Y ).
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Game of Life. Our second example is the Game of Life invented
by J.H. Conway in the 1970s (see, e.g., Allouche et al., 2001). The
game is defined as follows. We have a finite {1, . . . , n} × {1, . . . , n} or
an infinite Z × Z board. Each point on the board is either occupied
or vacant (living or dead). At each regular time step the points of the
board simultaneously change according to the following rules:

(birth) a vacant point with exactly three occupied neighbours becomes
an occupied cell,

(survival) an occupied point with two or three occupied neighbours
stays occupied,

(death) in all other cases, the point becomes or remains vacant.

Thus, at each step i ≥ 0 the state of the game can be represented by the
spatial model

Mi = (S, oMi , vMi), (1.27)

where S is the board, oMi is the set of occupied points at step i and
vMi the set of vacant ones.

The Game of Life can be represented by the spatial transition system
which consists of all possible models M of the form (1.27), and M � M′

holds iff M′ is obtained from M by one step of the game according to
the rules above. As the Game of Life is deterministic (for every M there
is exactly one M′ such that M � M′), there is exactly one evolution for
any spatial transition system representing it. In other words, for every
initial state of the Game we obtain exactly one snapshot model.

The Game of Life (on, say, Z×Z) can also be formalised as a dynamical
model

N =
(

(T, pN
0 , p

N
1 , . . . ), g

)

.

The underlying space T is comprised of all functions from Z × Z into
{o, v} representing distributions of occupied and vacant points, that is,
T = {o, v}Z×Z. The function g maps every η ∈ {o, v}Z×Z to the func-
tion g(η) ∈ {o, v}Z×Z representing the next distribution of occupied and
vacant points. In other words, the underlying space can be regarded as
the set of all models (S, oM, vM) with the function g given by the tran-
sition relation (rule) �. Finally, define a metric d on {o, v}Z×Z so that
g becomes a continuous function for the induced topology Id as follows.
Set, for η1, η2 ∈ {o, v}Z×Z,

d(η1, η2) =
1

k

iff η1 and η2 agree on all points within the k × k square

Ik = {(n,m) ∈ Z × Z | max{n,m} < k}
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but disagree on at least one point in Ik+1. One can show that the metric
d defines a compact topological space on {o, v}Z×Z with respect to which
g is continuous.

Notice that in this dynamical model predicates are not subsets of
the board Z × Z but of {o, v}Z×Z. We can take, for instance, some
interesting set pN

0 of initial states (i.e., models (S, oM, vM)), say, those
with precisely N living points, and check whether all of them (or at
least one of them) will eventually ‘die out,’ that is, reach the singleton
set pN

1 = {(S, oM, vM)} where oM is empty.
The resulting dynamical model N =

(

(T, pN
0 , p

N
1 , . . . ), g

)

can be ‘un-
ravelled’ into the transition system s0 � s1 � . . . where

µ(sn) =
(

T, g−n(pN
0 ), g−n(pN

1 ), . . .
)

.

8.1 Dynamic topological logics

We start our discussion of languages for reasoning about dynamical
systems by considering dynamical models based on various topological
spaces.

A dynamic topological model (DTM, for short) is a pair

A = (M, g),

where M = (T, pM
0 , p

M
1 , . . . ) is a topological model based on a topological

space T = (U, I) and g is a function on T. The minimum requirement
imposed on g in dynamical systems is its continuity. We remind the
reader that a function g on T is called continuous if g−1(X) is open
whenever X ⊆ U is open. If g(X) is open whenever X is open, then g is
called open. Another important type of functions is homeomorphisms,
that is, bijective continuous and open functions on T. (It is also usually
assumed that the underlying topological spaces are compact. We will
not make this assumption in general, but point out when our results
hold for compact topological spaces.)

The language we consider for representing and reasoning about dy-
namic topological systems is slightly different from most of the languages
for snapshot models because, as we have already seen, in dynamical sys-
tems we are more interested in following the orbit of an object in space
and time rather than in comparing the relative positions of regions in
space. That is why the language DT L for reasoning about topological
systems is ‘local’ in the sense that we see the space from the windows of
our moving ‘car’ as opposed to the ‘global’ language of spatio-temporal
logics from Sec. 6.1 where we could observe all moving ‘cars’ and their
relative positions. Formally, this means that we represent knowledge
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about the evolution of objects by means of terms and do not consider
formulas constructed from them.

The set of DT L-terms τ is defined as follows:

τ ::= p | τ | τ1 u τ2 | Iτ | ©τ | 2F τ | 3F τ.

It is worth noting that the addition of the operator U for ‘until’ to
the set of constructors for terms would not affect any of the results
presented below. We have omitted ‘until’ to keep the language as simple
as possible.

In a dynamic topological model A = (M, g), terms τ are interpreted as
sets τA ⊆ U , where M is based on the topological space (U, I). Clearly,
pA

i = pM
i for every spatial variable pi. The Boolean operators and the

operator I are interpreted as before. The interpretation of the temporal
operators on terms should become clear from the following consideration:
for a point w ∈ U and a term τ , we have

w ∈ (©τ)A iff g(w) ∈ τA iff w ∈ g−1(τA). (1.28)

Roughly, a time point n in a snapshot model corresponds to n applica-
tions of the function g. If we understand w ∈ (3F τ)

A as ‘eventually w
will be moved by g to τA’ and w ∈ (2F τ)

A as ‘g will always keep w in
τA,’ then

w ∈ (3F τ)
A iff Orbg(w) ∩ τA 6= ∅ iff w ∈

⋃

i>0

g−i(τA), (1.29)

w ∈ (2F τ)
A iff Orbg(w) ⊆ τA iff w ∈

⋂

i>0

g−i(τA). (1.30)

For example, w ∈
(

p1 u 3F p2

)A
means that w is in pA

1 and reaches pA
2

by a finite number of iterations of g.
In this section, we are interested in the satisfiability and validity prob-

lem for DT L-terms in some important classes of dynamic topological
models:

A DT L-term τ is satisfiable in a class M of DTMs iff there exists
A ∈ M such that τA 6= ∅.

A DT L-term τ is valid in a class M of DTMs iff τ is not satisfiable
in M—i.e., iff τA coincides with the whole space for every A ∈ M.

DTMs with homeomorphisms. We first connect satisfiabil-
ity in certain dynamic topological models with satisfiability in snapshot
topological temporal models. The discussion of the two examples above
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indicates already how one can go back and forth between snapshot topo-
logical models and dynamic topological models. More precisely, one can
show the following:

Theorem 1.38 Let M be any of the following classes of dynamic topo-
logical models:

DTMs based on Aleksandrov spaces with homeomorphisms;

DTMs based on topological spaces with homeomorphisms;

DTMs based on Rn with homeomorphisms, for n > 1;

DTMs based on the n-dimensional unit ball with a measure pre-
serving homeomorphism, for n > 1.

Then a DT L-term τ is satisfiable in M iff the formula ¬(τ = ⊥) is
satisfiable in a snapshot tt-model based on a topological space underlying
some model from the class M.

It should not come as a surprise now that reasoning with DT L-terms
about these classes of DTMs can be extremely complex. The follow-
ing result was proved in (Konev et al., 2006b) by reduction of Post’s
correspondence problem:

Theorem 1.39 Let M be any of the classes of DTMs mentioned in
Theorem 1.38. Then the set of DT L-terms that are valid in models
from M is not recursively enumerable.

It is worth noting that the four sets of terms that are valid in the
classes of models mentioned in Theorem 1.38 are all different. As was
shown by Slavnov (2003), the term

I3F

(

p u CIp
)

is not satisfiable in any DTM based on (Rn, g), while it is clearly satis-
fiable in some DTM. According to Kremer and Mints (2005), the term

Ip → C3F Ip,

where τ1 → τ2 = τ1 t τ2, is valid in all unit balls, but refuted in a
DTM based on an Aleksandrov space and a DTM based on Rn with
the homeomorphism (x1, . . . , xn) 7→ (x1, . . . , xn−1, xn + 1). Finally, the
DT L-term

2F Ip → I2F p

is valid in DTMs based on Aleksandrov spaces, but refuted in the classes
of DTMs based on Euclidean spaces and unit balls.
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DTMs with continuous functions. Theorem 1.38 shows that
DTMs with homeomorphisms behave similarly to topological snapshot
models. This situation changes drastically for DTMs with continuous
functions (which are not necessarily open). In this case, no correspond-
ing snapshot tt-models have been developed. To clarify—at least to
some extent—the relation between the two kinds of models, let us con-
sider DTMs based on Aleksandrov spaces.

Suppose that an Aleksandrov topological space TG = (W, IG) is in-
duced by the quasi-order G = (W,R) (see Sec. 3.1). Then it is easy to
check that a function g : W → W is a continuous function on TG iff for
all u, v ∈W ,

uRv implies g(u)Rg(v).

(A bijection f is a homeomorphism on TG iff both the above implication
and its converse hold.)

This observation suggests that DTMs based on Aleksandrov spaces
with continuous functions correspond to what may be called Aleksandrov
snapshot models with expanding domains. Indeed, suppose that A =
(M, g) is a DTM where M = (TG, p

M
0 , p

M
1 , . . . ), G = (W,R) is as above

and g is a continuous and surjective map on TG. Consider the sequence
of models

M0 = M, M1 = (TG1
, pM1

0 , . . . ), M2 = (TG2
, pM2

0 , . . . ), . . . (1.31)

where

Gn = (W,Rn),

uRnv iff gn(u)Rgn(v) for any u, v ∈W ,

u ∈ pMn

i iff gn(u) ∈ pM
i .

The temporal and topological operators on this sequence of models can
be interpreted in exactly the same way as in Sec. 6.1. In particular,

u ∈ (Cτ)Mn iff there is v ∈W such that uRnv and v ∈ τMn ,

u ∈ (3F τ)
Mn iff there is m > n such that u ∈ τMm .

We then obtain that, for every DT L-term τ , every w ∈ W and every
n ≥ 0,

gn(w) ∈ τA iff w ∈ τMn ,

and so τ is satisfiable in A iff τ is satisfiable in (1.31).
The difference between (1.31) and the snapshot models we have con-

sidered before is that the spaces TGn
or, which is the same, the quasi-

orders Gn = (W,Rn) do not necessarily coincide. More precisely, using
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Figure 1.10. Model with expanding domains.

the fact that g is continuous it is easy to see that Rn ⊆ Rn+1 for every
n ≥ 0; see Fig. 1.10. That is why we call these models snapshot models
with expanding domains. Fig. 1.10 also shows that the term

©Cτ → C©τ

is not valid in all DTMs with continuous functions, while it is clearly
valid in all DTMs with homeomorphisms. For more details on the con-
nection between such models and DTMs based on Aleksandrov spaces
with continuous functions see (Gabelaia et al., 2006).

It is known (see, e.g., Gabbay et al., 2003) that satisfiability in mod-
els with expanding domains can be reduced to satisfiability in models
with constant domains, but not the other way round as we shall see
a bit later. So in principle one could expect that the dynamic topo-
logical logics interpreted in DTMs based on arbitrary, Aleksandrov or
Euclidean topological spaces with continuous functions behave ‘better’
than their counterparts with homeomorphisms. Indeed, a fine-grained
complexity analysis reveals interesting differences between the logic of
homeomorphisms and the logic of continuous functions. We begin with
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the following ‘negative’ theorem proved in (Konev et al., 2005; Konev
et al., 2006a):

Theorem 1.40 Let M be any of the following classes of dynamic topo-
logical models:

DTMs based on Aleksandrov spaces with continuous functions;

DTMs based on topological spaces with continuous functions;

DTMs based on Rn with continuous functions, for n ≥ 1.

Then the satisfiability problem for DT L-terms in M is undecidable.

Note that, in contrast to DTMs with homeomorphisms, it is still not
clear whether any of these logics is recursively enumerable or even finitely
axiomatisable. However, the first exciting difference between the algo-
rithmic behaviour of the two models can be observed by considering
the fragment of DT L in which the topological operators are not ap-
plied to formulas containing the ‘infinitary’ temporal operators 2F and
3F . This language is still very expressive and the undecidability/non-
axiomatisability results of Theorems 1.39 and 1.40 still hold for it. How-
ever, the set of formulas from this fragment that are valid in DTMs
based on Aleksandrov spaces or arbitrary topological spaces with con-
tinuous functions is recursively enumerable. This is proved in (Konev
et al., 2006a) by an application of Kruskal’s tree theorem.

The proof of Theorem 1.40 proceeds by a rather involved reduction of
the ω-reachability problem for lossy channel systems (see Schnoebelen,
2002). It essentially uses the fact that the number of function iterations
is infinite. This observation opens a second possibility for a fine-grained
complexity analysis: what happens if we consider DTMs where only
finitely (but unboundedly) many function iterations are allowed. In this
case the interpretation of DT L-terms containing temporal operations
depends of course on the iteration step of g.

More precisely, let A = (M, g) be a DTM based on a topological space
(U, I), N > 0 is the allowed number of iterations of g, and n ≤ N . Given
a DT L-term τ , we define τA,n,N , the extension of τ after n steps in the
DTM A with N iterations, inductively as follows:

pA,n,N
i = pM

i ,

(τ1 u τ2)
A,n,N = τA,n,N

1 ∩ τA,n,N
2 ,

(τ )A,n,N = U − τA,n,N ,

(Iτ)A,n,N = IτA,n,N ,
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(©τ)A,n,N = ∅ for n = N , and (©τ)A,n,N = g−1(τA,n+1,N ) other-
wise,

(3F τ)
A,n,N =

N
⋃

m=n+1

gn−m(τA,m,N ).

Say that τ is satisfiable in DTMs from a class M with finite iterations,
or fi-satisfiable in M, for short, if there exist a DTM A in M and N > 0
such that τA,0,N 6= ∅.

It is not hard to see that the reduction of Post’s correspondence prob-
lem from the proof of Theorem 1.39 can be also used to prove the fol-
lowing:

Theorem 1.41 Let M be any of the classes of DTMs mentioned in
Theorem 1.38. Then fi-satisfiability of DT L-terms in M is undecidable.

On the contrary, if we consider the class of DTMs based on arbitrary
topological spaces with continuous functions then one can first reduce
fi-satisfiability in this class to fi-satisfiability in DTMs based on finite
Aleksandrov spaces with continuous functions, and then use Kruskal’s
tree theorem to prove the following:

Theorem 1.42 Let M be one of the following classes:

DTMs based on Aleksandrov spaces with continuous functions,

DTMs based on topological spaces with continuous functions.

Then fi-satisfiability of DT L-terms in M is decidable, but not in prim-
itive recursive time.

The non-primitive recursive lower bound is proved by reduction of the
reachability problem for lossy channel systems. All details can be found
in (Gabelaia et al., 2006).

8.2 Dynamic metric logics

In this section we fill the missing gap and consider the fourth formal
model—dynamic metric systems. Similarly to dynamic topological mod-
els from Sec. 8.1, a dynamic metric model (DMM, for short) is a pair of
the form

A = (M, g),

where M = (D, pM
0 , p

M
1 , . . . ) is a metric model based on a metric space

D = (∆, d) and g is a function on D. We will only consider isometric
functions, i.e., bijections on ∆ such that d(x, y) = d(g(x), g(y)), for
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all x, y ∈ ∆. For instance, the translation x 7→ x + 1 and reflection
x 7→ −x maps on R, the rotations gα of the two-dimensional unit ball
B2 = {(x1, x2) ∈ R2 | x2

1 + x2
2 ≤ 1} by the angle α around (0, 0) are

isometric automorphisms on the respective spaces.
We only consider the simplest language DML≤ of dynamic metric

logic, which is defined in the same way as DT L with the exception that
the topological operators are now replaced by the metric operators ∃≤a

and ∀≤a, for a ∈ Q≥0. Formally, DML≤-terms are

τ ::= p | τ | τ1 u τ2 | ∃≤aτ | ©τ | 2F τ | 3F τ.

Again, we omit the ‘until’ operator to keep our language simple, although
all the results can be extended to the language including ‘until.’

In a dynamic metric model A = (M, g), terms τ are interpreted as
sets τA ⊆ ∆, where M is based on the metric space D = (∆, d). For
spatial variables we have pA

i = pM
i ; the Boolean operators are interpreted

as usual, the metric operators ∃≤aτ and ∀≤aτ as in Sec. 3.3, and the
temporal operators as in Sec. 8.1.

The notions of satisfiability and validity of DML≤-terms are defined
in the standard way. The next theorem connects satisfiability in DMMs
with satisfiability in snapshot models from Sec. 7:

Theorem 1.43 A DML≤-term τ is satisfiable in a DMM with an iso-
metric function iff the formula ¬(τ = ⊥) is satisfiable in a metric snap-
shot model based on the same metric space.

As it happened with metric temporal logics in Sec. 7, dynamic metric
logics are slightly simpler then their topological counterparts:

Theorem 1.44 The set of DML≤-terms that are valid in DMMs with
isometric functions is decidable. However, the decision problem is not
elementary.

This theorem should not come as a surprise: its claim and the proof are
essentially the same as those of Theorem 1.34 (all details can be found
in Konev et al., 2006b).

9. Related ‘temporalised’ formalisms

The logics we have considered in this chapter can be regarded as
temporalisations of static spatial logics. As many other ‘static’ logics
have also been extended by a temporal dimension, for example, first-
order temporal logic (Gabbay et al., 1994), temporal epistemic logic
(Fagin et al., 1995), temporal description logic (Gabbay et al., 2003), it
makes sense to briefly discuss similarities and differences between these
temporalisations.
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The most generic approach to the temporalisation of a static logic
is of course first-order temporal logic. In this logic, temporal operators
may occur anywhere in first-order formulas (in particular, in the scope of
quantifiers), and the intended models are flows of time where each time
point is represented by a relational structure interpreting the first-order
part of the language. It is known since the 1960s that the resulting logics
are extremely complex, mostly Σ1

1-complete (see, e.g., Gabbay et al.,
1994; Gabbay et al., 2003 and references therein). For example, the two-
variable fragment, the monadic fragment, and the guarded fragment of
first-order temporal logic over the natural numbers and with constant
or expanding domains is Σ1

1-complete.
Only recently the so-called monodic fragments of first-order temporal

logics (in which temporal operators are only applied to formulas with at
most one free variable) have been identified as expressive yet often de-
cidable (or at least recursively enumerable) fragments (Hodkinson et al.,
2000; Hodkinson et al., 2001; Gabbay et al., 2003). The positive results
about the monodic fragments rely, however, on the fact that they are
not able to express that a binary relation does not change over time. In
other words, in the monodic fragments one can reason about the change
(or non-change) of unary predicates but not about the change (or non-
change) of binary relations. This feature of monodic fragments is in
sharp contrast with the logics we encounter in the context of spatio-
temporal representation and reasoning: as we have seen, in this case we
usually expect the underlying space (e.g., a metric or topological space)
not to change in time. What changes is the extension of unary predi-
cates. That is to say, we almost always have at least one constant binary
relation (or higher-order operator): in metric spaces the relation R(x, y)
defined by d(x, y) < a, in Aleksandrov spaces the relation R inducing the
topological space, in arbitrary topological spaces even the higher-order
interior operator, etc. For this reason, the results on the decidability of
monodic fragments do not apply to spatio-temporal logics. In fact, we
have seen that the straightforward combination of spatial and temporal
formalisms almost always leads to highly undecidable logics. In the more
abstract setting of products of modal logics this phenomenon has been
recently investigated by Gabbay et al. (2003), Gabelaia et al. (2005b,
2006).

The main message to be deduced from the results on combinations of
spatial and temporal formalisms is that a fine-tuned analysis of both the
spatial logic and the interaction between spatial and temporal operators
is required in order to obtain expressive and still decidable formalisms.
There appears to be no general way of translating positive results from
other temporalisations to spatio-temporal logics. Actually, this is also
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the case for temporal epistemic logic and temporal description logic.
Again, most of the ‘positive’ results in those areas depend on the as-
sumption that one cannot reason about the change (and non-change)
of binary relations. With one exception, the results in those areas are
therefore much closer to the results on monodic fragments of first-order
temporal logics than to the results on spatio-temporal logics.

The only exception from this rule we know is the decidability (in non-
elementary time) of the satisfiability problem for terms of the metric
temporal and dynamic logics. Although this result cannot be obtained
as an instance of a known result from other temporalised formalisms, its
proof nevertheless closely resembles the proofs of the following results:

The decidability (in non-elementary time) of the temporal epis-
temic logic with multi-modal S5 interpreted in synchronous sys-
tems with perfect recall and no learning (Halpern and Vardi, 1989).

In temporal description logic, the decidability (in non-elementary
time) of the satisfiability problem for temporalised ALC where
roles (binary predicates) do not change over time (Wolter and Za-
kharyaschev, 1999; Gabbay et al., 2003).

In all these cases, we deal with models where certain relations do not
change over time (in the epistemic case these are the equivalence rela-
tions interpreting the epistemic operators, in the description logic case
these are the roles interpreting the value restrictions). The crucial prop-
erty underlying the decidability proofs is that those constant relations
can be assumed to form tree-like structures and that the satisfaction rela-
tion is ‘local’ in the sense that the interpretation of terms (propositional
variables/concepts) in a certain distance from the root of the tree-like
structure does not influence the satisfaction relation in the root.

Notice, however, that in each case one has to consider carefully the
constraints on the relations. As we know from Theorem 1.21, a decidabil-
ity proof does not go through for transitive relations (from Aleksandrov
spaces) which do not change over time.
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