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The problems considered in this paper originate in recent applications of large scale ontologies
in medicine and other life sciences. The profile OWL 2 EL of the OWL 2 Web Ontology Language,1

used for this purpose, is based on the description logic EL [7]. The syntactic terms of EL, called
concepts, are interpreted as sets in first-order relational models. Concepts are constructed from
atomic concepts and constants for the whole domain and empty set using intersection and existential
restrictions of the form ∃R.C, R a binary relation and C a concept, which are understood as
∃y (R(x, y) ∧ C(y)). From a modal logic point of view, concepts are modal formulas constructed
from propositional variables and the constants >, ⊥ using conjunction and diamonds. An EL-theory
is a set of inclusions (or implications) between such concepts, and the main reasoning problem in
applications of EL in life sciences is to decide whether an EL-theory entails a concept inclusion when
interpreted over a class of relational structures satisfying certain constraints on its binary relations.
Standard constraints in OWL 2 EL are transitivity and reflexivity, for which reasoning in EL is
PTime-complete, as well as symmetry and functionality, for which reasoning is ExpTime-complete
[1, 2].

As in modal logic, apart from reasoning over relational models, one can try to develop a purely
syntactical reasoning machinery using a calculus. In other words, we can define a more general
algebraic semantics for EL: the underlying algebras are bounded meet-semilattices with monotone
operators (SLOs, for short), constraints are given by equational theories of SLOs, and the reason-
ing problem is validity of quasi-equations in such equational theories. The resulting more general
entailment problem is not necessarily complete with respect to the ‘intended’ relational semantics.
This paper presents our initial results in an attempt to clarify which equational theories of SLOs
are complete in this sense and which are not. We also prove that the completeness problem—given
a finitely axiomatised equational theory of SLOs, decide whether it is complete with respect to
the relational semantics—is algorithmically undecidable, which establishes a principle limitation
regarding possible answers to our research question.

An EL-equation is an expression of the form ϕ ≤ ψ, where ϕ and ψ are terms that are built
from variables xj , j ≥ 1, using meet ∧, unary operators fi, for i ∈ I, and constants 1 and 0.
An EL-theory, T , is a set of EL-equations; and an EL-quasi-equation is an expression of the form
(ϕ1 ≤ ψ1) & · · · & (ϕn ≤ ψn) → (ϕ ≤ ψ), where the ϕi ≤ ψi and ϕ ≤ ψ are EL-equations. The
class of SLOs A = (A,∧, 0, 1, fi)i∈I validating all equations in T is the variety V(T ). The ‘intended’

1http://www.w3.org/TR/owl2-overview/



relational semantics of EL is given by EL-structures F = (∆, Ri)i∈I , which consist of a set ∆ 6= ∅
and binary relations Ri on it. Every such F gives rise to the complex algebra F+ = (2∆, Fi)i∈I of F,
where 2∆ is the full Boolean set algebra over ∆ and Fi(X) = {x ∈ ∆ | ∃y ∈ X xRiy}, for X ⊆ ∆.
Complex algebras (CAs) are special cases of Boolean algebras with normal and ∨-additive operators
(BAOs, for short). The class of bounded distributive lattices with normal and ∨-additive operators is
denoted by DLO. Slightly abusing notation (and remembering the signatures of DLOs and BAOs),
we may assume that CA ⊆ BAO ⊆ DLO ⊆ SLO.

Given a class C of SLOs, an EL-theory T and a quasi-equation q, we say that q follows from T
over C and write T |=C q if A |= q, for every A ∈ C with A |= T . An EL-theory T is said to be
C-conservative if T |=C q implies T |=SLO q, for every quasi-equation q. We call T complete if it is
CA-conservative.

A standard way of establishing completeness of a modal logic is by showing that its axioms
generate what Goldblatt [3] calls a ‘complex variety.’ This notion works equally well in the EL
setting: We say that an EL-theory T is complex if every A ∈ V(T ) is embeddable in some F+ ∈ V(T ).
The following theorem provides our main tool for investigating completeness of EL-theories:

Theorem 1. For every EL-theory T ,

T is complex iff T is complete iff T is BAO-conservative.

The proof of this theorem uses the fact that all EL-equations correspond to Sahlqvist formulas
in modal logic. Therefore, every A ∈ BAO validating an EL-theory T is embeddable into some
F+ ∈ CA validating T . It also follows from the ‘correspondence’ part of Sahlqvist’s theorem that
the class of EL-structures validating any EL-theory is first-order definable. For example,

– x ≤ f(x) defines reflexivity;

– f(f(x)) ≤ f(x) defines transitivity;

– x ∧ f(y) ≤ f(f(x) ∧ y) defines symmetry;

– f(x) ∧ f(y) ≤ f(x ∧ y) defines functionality;

– f(x ∧ y) ∧ f(x ∧ z) ≤ f(x ∧ f(y) ∧ f(z)) defines linearity over quasi-orders.

(We refer the reader to [6] for first steps towards a correspondence theory for EL.) In contrast to
modal logic, however, the ‘completeness’ part of Sahlqvist’s theorem does not hold. The possibly
simplest example of an incomplete EL-theory is {f(x) ≤ x} (to see that this theory is not complex,
it is enough to consider the SLO with three elements 0 < a < 1 and the operation f such that
f(a) = f(0) = 0 and f(1) = 1).

SLOs validating the reflexivity and transitivity equations above (but without 0 and 1 in the
signature) have been studied by Jackson [4] under the name ‘closure semilattices’ (CSLs). He
proves that every CSL is embeddable into a BAO validating reflexivity and transitivity. With a
slight modification of his technique, we can obtain:

Theorem 2. The EL-theory {x ≤ f(x), f(f(x)) ≤ f(x)} is complete.

A more general completeness result has been proved by Sofronie-Stokkermans [9]:

Theorem 3 ([9]). Every EL-theory consisting of equations of the form f1 . . . fn(x) ≤ f(x), n ≥ 0,
is complete.

This result implies that reflexivity or transitivity alone is also complete. Using modifications of
Sofronie-Stokkermans’ techniques, we can also cover symmetry, functionality, and some combinations
thereof.



Theorem 4. The following EL-theories are complete:

– {x ∧ f(y) ≤ f(f(x) ∧ y)} (symmetry);

– {f(x) ∧ f(y) ≤ f(x ∧ y)} (functionality);

– {x ≤ f(x), f(f(x)) ≤ f(x), x ∧ f(y) ≤ f(f(x) ∧ y)} (reflexivity, transitivity and symmetry).

In general, completeness is not preserved under unions of EL-theories. For example:

Theorem 5. Neither the union T1 of reflexivity and functionality, nor the union T2 of symmetry
and functionality is complete.

Interestingly, in both cases one can easily restore completeness by adding the equation f(x) ≤ x
to T1, and by adding f(f(x)) ≤ x to T2. (Observe that these equations are consequences of T1 and
T2 in modal logic.)

We also have a full picture of extensions of

TS5 = {x ≤ f(x), f(f(x)) ≤ f(x), x ∧ f(y) ≤ f(f(x) ∧ y)},

using that these equations axiomatise the well-known modal logic S5, and normal CSLs in [4]:

Theorem 6. The EL-theory TS5 ∪ {f(x) ∧ f(y) ≤ f(x ∧ y)} is incomplete. All other (countably
infinitely many) extensions of TS5 are complete.

As a first step towards general completeness results, we note the following analogue of complete-
ness preservation under fusions of modal logics [5]. We call T1 ∪ T2 a fusion of EL-theories T1 and
T2 if the sets of the fi-operators occurring in T1 and T2 are disjoint.

Theorem 7. The fusion of complete EL-theories is also complete.

The proofs of Theorems 3 and 4 go via two steps: (1) by embedding any SLO validating T into
a DLO validating T , and then (2) by embedding this DLO into a BAO validating T , using various
extensions of Priestley’s [8] DL-to-BA embedding to the operators fi. As concerns step (1), we have
the following result:

Theorem 8. Every EL-theory containing only equations where each variable occurs at most once
in the left-hand side is DLO-conservative.

An interesting example, showing that the condition on the number of occurrences of variables in
the left-hand side of equations in Theorem 8 cannot be dropped, is given by the EL-theory

TS4.3 = {x ≤ f(x), f(f(x)) ≤ f(x), f(x ∧ y) ∧ f(x ∧ z) ≤ f(x ∧ f(y) ∧ f(z))}.

Observe first that TS4.3 defines a relation which is reflexive, transitive and right-linear, that is,
∀x, y, z(R(x, y) ∧R(x, z)→ R(y, z) ∨R(z, y)). The modal logic determined by this frame condition
is known as S4.3, and the EL-equations above axiomatise, if added to the equations for BAOs, the
corresponding variety. However, one can show the following:

Theorem 9. TS4.3 is not DLO-conservative.

Proof. Consider the quasi-equation

q =
(
f(x) ∧ y = x ∧ f(y)

)
→

(
f(x) ∧ f(y) = f(x ∧ y)

)



and the SLO A = (A,∧, 0, 1, f), where

A = {0, a, b, c, d, e, 1},
a ∧ b = a ∧ c = b ∧ c = 0,
d = a ∨ b, e = b ∨ c, 1 = d ∨ e,
f(a) = d, f(c) = e, and f(x) = x for the remaining x ∈ A.

One can check that TS4.3 |=DLO q; on the other hand, A |= TS4.3, A 6|= q, and so TS4.3 6|=SLO q.

Finally, we analyse the completeness problem for EL-theories from the algorithmic point of view
and show that it is impossible to give an effective syntactic criterion for completeness:

Theorem 10. It is undecidable whether a finite set T of EL-equations is complete.

The proof of this result proceeds in two steps. First, we show the following by reduction of the
undecidable halting problem for Turing machines:

Theorem 11. Triviality of finite sets of EL-equations is undecidable; more precisely, no algorithm
can decide, given a finite set T of EL-equations, whether T |=SLO 0 = 1.

In the second step, we prove that, for every EL-theory T , the following two conditions are
equivalent:

– the fusion of T and {f(x) ≤ x} is complete;

– T |=SLO 0 = 1.

Theorem 10 is then an immediate consequence of Theorem 11 and this equivalence.
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