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Abstract

It follows from algebraic results of Maddux that every multi-modal
logic L such that [S5,S5, . . . ,S5] ⊆ L ⊆ S5n is undecidable, whenever
n ≥ 3. This implies that the product logic S5×S5×S5 does not have the
product finite model property. Here we answer a question of Gabbay and
Shehtman by showing that S5×S5×S5 also lacks the ‘real’ finite model
property (fmp). We prove that every logic L from the above interval lacks
the fmp. (In algebraic setting: If V is a variety of n-dimensional diagonal-
free cylindric algebras which contains all the representables then V does
not have the finite algebra property.)

1 Introduction and the result

Multi-modal logics are of growing importance in many areas of computer sci-
ence, artificial intelligence, knowledge representation and reasoning, and lin-
guistics. In this paper we discuss the finite model property of n-modal logics:
propositional multi-modal logics having finitely many unary modal operators
30, . . . ,3n−1 (and their duals 20, . . . ,2n−1). Formulas of this language, us-
ing propositional variables from some fixed countable set P , are called n-modal
formulas. For each natural number n > 1, the well-known (cf. [3]) n-modal logic

[ S5,S5, . . . ,S5︸ ︷︷ ︸
n

]

is the smallest set of n-modal formulas which

(1) is closed under the rules of Substitution, Modus Ponens, and Necessitation
A/2iA, for i < n;

and contains, for all i, j < n,

(2) all propositional tautologies and formulas of the form

2i(p→ q)→ (2ip→ 2iq);

(3) the S5-axioms for 2i: 2ip→ p, p→ 2i3ip, 2ip→ 2i2ip;
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(4) 2i2jp↔ 2j2ip.

Special frames for n-modal logics are the product frames. Given Kripke frames
F0 = 〈W0, R0〉, . . . ,Fn−1 = 〈Wn−1, Rn−1〉, their product is defined to be the
relational structure

F0 × · · · × Fn−1 = 〈W0 × · · · ×Wn−1, R̄0, . . . , R̄n−1〉

where, for each i < n, R̄i is the following binary relation on the Cartesian
product W0 × · · · ×Wn−1:

〈u0, . . . , un−1〉R̄i〈v0, . . . , vn−1〉 iff uiRivi and uk = vk, for k 6= i.

Given Kripke complete unimodal logics Li (i < n), define the product logic
L0 × · · · × Ln−1 as the set of all n-modal formulas which are valid in those
product frames 〈W0, R0〉 × · · · × 〈Wn−1, Rn−1〉 where, for each i < n, 〈Wi, Ri〉
is a frame for Li. This way one can obtain new logics, e.g., for n ≥ 3, the
product logic S5n—being non-finitely axiomatizable by [6]—is different from
[S5,S5, . . . ,S5]. Though, it is routine to check that [S5,S5, . . . ,S5] ⊆ S5n

holds. Also, it is not hard to see that S5n is already determined by products of
rooted (i.e., universal) S5-frames.

From now on, we always let n ≥ 3. An n-modal logic L has the finite model
property (fmp) if for any n-formula ϕ /∈ L there is a finite model M such that
M |= L and M 6|= ϕ. Note that it is the same as requiring the existence of a
finite frame F with F |= L and F 6|= ϕ (see e.g. [2, Thm.8.47]). L has the product
fmp if for any ϕ /∈ L there is a finite product frame such that F |= L and F 6|= ϕ.
Of course, the product fmp implies the fmp, but not the other way round, e.g.,
Kn has the fmp (see [3]), but lacks the product fmp, for n ≥ 3 (see [5]).

It follows from the algebraic results of [7] that every n-modal logic between
[S5,S5, . . . ,S5] and S5n is undecidable (see also section 2 below for the tech-
nique of [7]). This implies that the finitely axiomatizable logic [S5,S5, . . . ,S5]
does not have the fmp. Since S5n is recursively enumerable (see, e.g., [4]) and,
by the finite axiomatizability of S5, finite product frames for S5n are recursively
enumerable, it also follows that S5n lacks the product fmp. However, even if a
finite frame for S5n is a p-morphic image of some product frame for S5n, this
product frame cannot necessarily be chosen finite (see [5] for a counterexample).
Thus, in case of S5n, the lack of fmp does not follow in an obvious way from
the lack of product fmp.

Our main result is the following theorem:

Theorem 1. Let L be a logic such that

[S5,S5, . . . ,S5] ⊆ L ⊆ S5n.

Then L lacks the finite model property, whenever n ≥ 3.

As a corollary we obtain a negative answer to question Q21 of Gabbay and
Shehtman [3]:
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Corollary 2. S53 does not have the fmp.

However, it remains open whether product logics like, e.g., K43, S43, K4×
S4 × S5 have the fmp. Answering these questions may give some insight for
intriguing open decision problems of two-dimensional products of transitive log-
ics, such as S4×S4, K4×S4, K4×K4. These logics are known to be finitely
axiomatizable (see [3]), thus if they had the fmp then they would be decidable.
Note that these logics lack the product fmp.

2 Modal algebras

In this section we reformulate and prove Theorem 1 in an algebraic setting, see
Theorem 3 below. Similarly to the unimodal case (see e.g. [2]), an n-modal
algebra is a Boolean algebra with n unary normal operators, that is, a structure

A = 〈A,+A, ·A,−A, 1A, 0A,3A
i 〉i<n,

where 〈A,+A, ·A,−A, 1A, 0A〉 is a Boolean algebra and, for all a, b ∈ A, i < n,

3A
i (a+A b) = 3A

i a+A 3A
i b and 3A

i 0A = 0A.

A valuation to A is a function υ mapping n-modal formulas to elements of A
which is defined the usual natural way: it turns the propositional connectives
to the Booleans and the modal operators to themselves. An n-modal formula ϕ
is said to be true in an algebraic model 〈A, υ〉 if υ(ϕ) = 1A holds. We say that
ϕ is valid or holds in algebra A (in symbols: A |= ϕ) if ϕ is true in all algebraic
models of form 〈A, υ〉. For any normal n-modal logic L, AlgL is the class of all
n-modal algebras validating all formulas of L.

The class Alg[S5,S5, . . . ,S5] is a class well-known in algebraic logic, it is
the class Dfn of diagonal-free cylindric algebras of dimension n (see [1], [4]).
In other words, an n-dimensional diagonal-free cylindric algebra is an n-modal
algebra where (3)–(4) of the previous section hold. To obtain AlgS5n, observe
that every Kripke frame F = 〈W,R0, . . . , Rn−1〉 for an n-modal logic gives rise
to the n-modal algebra A(F) of all subsets of W where, for every X ⊆W , i < n,

3
A(F)
i X = {w ∈W : ∃u ∈ X with wRiu}.

This way every product F of rooted (i.e., universal) S5-frames leads to a diagonal-
free cylindric algebra A(F) whose elements are all subsets of some Cartesian
product W0 × · · · ×Wn−1 and, for any such subset X, i < n,

3
A(F)
i X = {〈w0, . . . , wn−1〉 : ∃u ∈Wi with

〈w0, . . . , wi−1, u, wi+1, . . . , wn−1〉∈X}.

It is easy to see that, in general, an n-modal formula is valid in a frame F iff
it is valid in the algebra A(F). Therefore, AlgS5n is the variety generated by
the above kind of diagonal-free cylindric algebras. This variety is called in the

3



algebraic logic literature the variety RDfn of representable diagonal-free cylindric
algebras of dimension n (see Andréka et al. [1], [4]).

A variety V of n-modal algebras has the finite algebra property if V is gener-
ated by its finite members. In other words, for all n-modal formulas ϕ, if A 6|= ϕ
for some A ∈ V then there is some finite B ∈ V with B 6|= ϕ. It is well-known
(see e.g. [2]) that a logic L has the fmp iff AlgL has the finite algebra property.
Now we are ready to reformulate Theorem 1 for diagonal-free cylindric algebras.
Note that related results about cylindric algebras are in [8].

Theorem 3. Let n ≥ 3, and V be a variety with RDfn ⊆ V ⊆ Dfn. Then V
does not have the finite algebra property. Namely, there is an n-modal formula
ϕ such that

• A |= ϕ, for every finite A ∈ Dfn, and

• there is some B ∈ RDfn with B 6|= ϕ.

Proof. Consider the following quasi-equation (that is, a conjunction of finitely
many equations implying one equation) Q∗ of the language of semigroups (we
use ◦ for multiplication):

[(x = e◦x = x◦e) ∧ (y = e◦y = y◦e) ∧ (e = e◦e) ∧ (x◦y = e)]
→ (y◦x = e).

Claim 3.1. Q∗ fails in some infinite semigroup.

Proof. For instance, consider the monoid of ω → ω functions with composition.
It is routine to check that the function m 7→ m+ 1 has an inverse from one side
but not from the other.

Claim 3.2. Q∗ holds in every finite semigroup.

Proof. Assume that the antecedent of Q∗ holds in some finite semigroup S.
Since S is finite, the subsemigroup of S generated by x, y and e is a finite
monoid with identity element e. Then in this finite monoid xk = x` must
hold, for some natural numbers k < `. Therefore, by x having a right-inverse,
x`−k = e holds (with `− k ≥ 1). Thus

y◦x = x`−k◦y◦x = x`−k−1◦x◦y◦x = x`−k−1◦x = x`−k = e

holds.

Next, using the technique of [7], we interpret semigroups in diagonal-free
cylindric algebras. Take some A ∈ Dfn, and d0, d1 ∈ A. For any a, b ∈ A, define

a◦Ad0d1
b = 3A

2

[
3A

1 (d0 ·A 3A
2 a) ·A 3A

0 (d1 ·A 3A
2 b)
]
.

Given propositional variables r0, r1 ∈ P and n-modal formulas ψ, χ, the n-modal
formula ψ ◦r0r1 χ is defined analogously, by taking

ψ◦r0r1χ = 32 [31(r0 ∧32ψ) ∧30(r1 ∧32χ)] .
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Now fix some propositional variables r0, r1 ∈ P . For any term τ of the language
of semigroups, define inductively an n-modal formula τ+ as follows:

• for any variable x, let x+ = px, where px ∈ P and px 6= r0, r1, and

• (σ◦%)+ = σ+ ◦r0r1 %
+.

For any quasi-equation Q of the language of semigroups of form

[(τ1 = σ1) ∧ · · · ∧ (τm = σm)] → (τ0 = σ0) ,

let ϕQ be the following n-modal formula:

2
[
(τ+

1 ↔ σ+
1 ) ∧ · · · ∧ (τ+

m ↔ σ+
m) ∧ (r0 ↔ 30r0) ∧ (r1 ↔ 31r1)

]
→

→
[
(τ+

0 ◦r0r1 31q)↔ (σ+
0 ◦r0r1 31q)

]
,

where 2χ abbreviates 2021 . . .2n−1χ, and q is a fresh propositional variable.

Lemma 4. ([7]) Let A ∈ Dfn, and d0, d1 ∈ A such that 3A
0 d0 = d0 and 3A

1 d1 =
d1. For any a, b ∈ A, define

a∼A
d0d1

b ⇐⇒ (∀w ∈ A) a◦Ad0d1
3A

1 w = b◦Ad0d1
3A

1 w .

Then the following hold:

(i) ∼A
d0d1

is a congruence of 〈A, ◦Ad0d1
〉, that is, for any a, b, c ∈ A, if a ∼A

d0d1
b

then

(a ◦Ad0d1
c) ∼A

d0d1
(b ◦Ad0d1

c) and (c ◦Ad0d1
a) ∼A

d0d1
(c ◦Ad0d1

b).

(ii) The quotient algebra 〈A, ◦Ad0d1
〉/∼A

d0d1
is a semigroup.

(iii) If A is a simple algebra then, for any quasi-equation Q of the language of
semigroups,

〈A, ◦Ad0d1
〉/∼A

d0d1
|= Q implies A |= ϕQ.

Now recall the quasi-equation Q∗ above.

Corollary 5. ϕQ∗ holds in every finite A ∈ Dfn.

Proof. Assume that there is some finite A ∈ Dfn and d0, d1 ∈ A such that

A 6|= ϕQ∗ [r0/d0, r1/d1] .

It is well-known (see [4]) that every subdirectly irreducible algebra in Dfn is
simple, so we may assume that A is simple. Then 3A

0 d0 = d0 and 3A
1 d1 = d1

must hold, otherwise the antecedent of ϕQ∗ would be false. Thus, by Lemma 4
above, Q∗ fails in the finite semigroup 〈A, ◦Ad0d1

〉/∼A
d0d1

, contradicting Claim 3.2.

Lemma 6. ϕQ∗ fails in some (infinite) B ∈ RDfn.
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Proof. This is the similar to the argument in [7], but we sketch it for complete-
ness. By Claim 3.1, there is some (infinite) semigroup S = 〈S, ◦〉 where ϕ fails.
We may assume that S is a monoid. (If not then choose some e /∈ S and take
the monoid S+ = 〈S ∪ {e}, ◦′〉, where x ◦′ y = x ◦ y whenever x, y ∈ S and
x ◦′ e = e ◦′ x = x, for every x ∈ S ∪ {e}.) Now consider the diagonal-free cylin-
dric algebra AS ∈ RDfn of all subsets of Sn, and take the diagonal elements D02

and D12 of AS defined by

Di2 = {〈s0, . . . , sn−1〉 ∈ Sn : si = s2} (i = 0, 1).

Then 3
AS
0 D12 = D12 and 3

AS
1 D02 = D02 hold. Define a map h by taking, for

any s ∈ S,
h(s) = {〈s0, . . . , sn−1〉 ∈ Sn : s1 = s0 ◦ s} .

It is easy to check that h is one-one and, for all s, t ∈ S,

h(s ◦ t) = h(s) ◦AS

D12D02
h(t)

hold. (This h is in fact the Cayley representation of the monoid S, taken in the
first two coordinates of AS .) Now, in order to show that ϕQ∗ fails in AS , it is
enough to prove that h(s) 6∼AS

D12D02
h(t) whenever s 6= t. To this end, take some

s 6= t ∈ S and let

w = {〈s0, . . . , sn−1〉 ∈ Sn : s0 = s} .

Let e denote the identity element of S. Then clearly 3
AS
1 w = w, and any

sequence of form 〈e, . . . 〉 belongs to h(s) ◦AS

D12D02
w but not to h(t) ◦AS

D12D02
w,

showing that they are different.

Finally, Corollary 5 and Lemma 6 prove Theorem 3.
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