$S5 \times S5 \times S5$ lacks the finite model property

A. Kurucz Dept. of Computer Science King's College London

Abstract

It follows from algebraic results of Maddux that every multi-modal logic L such that $[\mathbf{S5}, \mathbf{S5}, \dots, \mathbf{S5}] \subseteq L \subseteq \mathbf{S5}^n$ is undecidable, whenever $n \geq 3$. This implies that the product logic $\mathbf{S5} \times \mathbf{S5} \times \mathbf{S5}$ does not have the product finite model property. Here we answer a question of Gabbay and Shehtman by showing that $\mathbf{S5} \times \mathbf{S5} \times \mathbf{S5}$ also lacks the 'real' finite model property (fmp). We prove that every logic L from the above interval lacks the fmp. (In algebraic setting: If V is a variety of n-dimensional diagonal-free cylindric algebras which contains all the representables then V does not have the finite algebra property.)

1 Introduction and the result

Multi-modal logics are of growing importance in many areas of computer science, artificial intelligence, knowledge representation and reasoning, and linguistics. In this paper we discuss the finite model property of n-modal logics: propositional multi-modal logics having finitely many unary modal operators $\diamond_0, \ldots, \diamond_{n-1}$ (and their duals $\Box_0, \ldots, \Box_{n-1}$). Formulas of this language, using propositional variables from some fixed countable set P, are called n-modal formulas. For each natural number n > 1, the well-known (cf. [3]) n-modal logic

$$[\underbrace{\mathbf{S5},\mathbf{S5},\ldots,\mathbf{S5}}_n]$$

is the smallest set of n-modal formulas which

(1) is closed under the rules of Substitution, Modus Ponens, and Necessitation $A/\Box_i A$, for i < n;

and contains, for all i, j < n,

(2) all propositional tautologies and formulas of the form

$$\Box_i(p \to q) \to (\Box_i p \to \Box_i q);$$

(3) the **S5**-axioms for \Box_i : $\Box_i p \to p$, $p \to \Box_i \Diamond_i p$, $\Box_i p \to \Box_i \Box_i p$;

$$(4) \ \Box_i \Box_j p \leftrightarrow \Box_j \Box_i p.$$

Special frames for *n*-modal logics are the *product frames*. Given Kripke frames $\mathfrak{F}_0 = \langle W_0, R_0 \rangle, \dots, \mathfrak{F}_{n-1} = \langle W_{n-1}, R_{n-1} \rangle$, their product is defined to be the relational structure

$$\mathfrak{F}_0 \times \cdots \times \mathfrak{F}_{n-1} = \langle W_0 \times \cdots \times W_{n-1}, \bar{R}_0, \dots, \bar{R}_{n-1} \rangle$$

where, for each i < n, \bar{R}_i is the following binary relation on the Cartesian product $W_0 \times \cdots \times W_{n-1}$:

$$\langle u_0, \dots, u_{n-1} \rangle \bar{R}_i \langle v_0, \dots, v_{n-1} \rangle$$
 iff $u_i R_i v_i$ and $u_k = v_k$, for $k \neq i$.

Given Kripke complete unimodal logics L_i (i < n), define the *product logic* $L_0 \times \cdots \times L_{n-1}$ as the set of all n-modal formulas which are valid in those product frames $\langle W_0, R_0 \rangle \times \cdots \times \langle W_{n-1}, R_{n-1} \rangle$ where, for each i < n, $\langle W_i, R_i \rangle$ is a frame for L_i . This way one can obtain new logics, e.g., for $n \geq 3$, the product logic $\mathbf{S5}^n$ —being non-finitely axiomatizable by [6]—is different from $[\mathbf{S5}, \mathbf{S5}, \ldots, \mathbf{S5}]$. Though, it is routine to check that $[\mathbf{S5}, \mathbf{S5}, \ldots, \mathbf{S5}] \subseteq \mathbf{S5}^n$ holds. Also, it is not hard to see that $\mathbf{S5}^n$ is already determined by products of rooted (i.e., universal) $\mathbf{S5}$ -frames.

From now on, we always let $n \geq 3$. An n-modal logic L has the finite model property (fmp) if for any n-formula $\varphi \notin L$ there is a finite model \mathfrak{M} such that $\mathfrak{M} \models L$ and $\mathfrak{M} \not\models \varphi$. Note that it is the same as requiring the existence of a finite frame \mathfrak{F} with $\mathfrak{F} \models L$ and $\mathfrak{F} \not\models \varphi$ (see e.g. [2, Thm.8.47]). L has the product fmp if for any $\varphi \notin L$ there is a finite product frame such that $\mathfrak{F} \models L$ and $\mathfrak{F} \not\models \varphi$. Of course, the product fmp implies the fmp, but not the other way round, e.g., \mathbf{K}^n has the fmp (see [3]), but lacks the product fmp, for $n \geq 3$ (see [5]).

It follows from the algebraic results of [7] that every n-modal logic between $[\mathbf{S5}, \mathbf{S5}, \dots, \mathbf{S5}]$ and $\mathbf{S5}^n$ is undecidable (see also section 2 below for the technique of [7]). This implies that the finitely axiomatizable logic $[\mathbf{S5}, \mathbf{S5}, \dots, \mathbf{S5}]$ does not have the fmp. Since $\mathbf{S5}^n$ is recursively enumerable (see, e.g., [4]) and, by the finite axiomatizability of $\mathbf{S5}$, finite product frames for $\mathbf{S5}^n$ are recursively enumerable, it also follows that $\mathbf{S5}^n$ lacks the product fmp. However, even if a finite frame for $\mathbf{S5}^n$ is a p-morphic image of some product frame for $\mathbf{S5}^n$, this product frame cannot necessarily be chosen finite (see [5] for a counterexample). Thus, in case of $\mathbf{S5}^n$, the lack of fmp does not follow in an obvious way from the lack of product fmp.

Our main result is the following theorem:

Theorem 1. Let L be a logic such that

$$[\mathbf{S5}, \mathbf{S5}, \dots, \mathbf{S5}] \subseteq L \subseteq \mathbf{S5}^n.$$

Then L lacks the finite model property, whenever $n \geq 3$.

As a corollary we obtain a negative answer to question Q21 of Gabbay and Shehtman [3]:

Corollary 2. S5³ does not have the fmp.

However, it remains open whether product logics like, e.g., $\mathbf{K4}^3$, $\mathbf{S4}^3$, $\mathbf{K4} \times \mathbf{S4} \times \mathbf{S5}$ have the fmp. Answering these questions may give some insight for intriguing open decision problems of two-dimensional products of transitive logics, such as $\mathbf{S4} \times \mathbf{S4}$, $\mathbf{K4} \times \mathbf{S4}$, $\mathbf{K4} \times \mathbf{K4}$. These logics are known to be finitely axiomatizable (see [3]), thus if they had the fmp then they would be decidable. Note that these logics lack the product fmp.

2 Modal algebras

In this section we reformulate and prove Theorem 1 in an algebraic setting, see Theorem 3 below. Similarly to the unimodal case (see e.g. [2]), an n-modal algebra is a Boolean algebra with n unary normal operators, that is, a structure

$$\mathfrak{A} = \langle A, +^{\mathfrak{A}}, \cdot^{\mathfrak{A}}, -^{\mathfrak{A}}, 1^{\mathfrak{A}}, 0^{\mathfrak{A}}, \diamond_{i}^{\mathfrak{A}} \rangle_{i < n},$$

where $\langle A, +^{\mathfrak{A}}, \cdot^{\mathfrak{A}}, -^{\mathfrak{A}}, 1^{\mathfrak{A}}, 0^{\mathfrak{A}} \rangle$ is a Boolean algebra and, for all $a, b \in A, i < n$,

$$\diamondsuit_i^{\mathfrak{A}}(a+^{\mathfrak{A}}b) = \diamondsuit_i^{\mathfrak{A}}a+^{\mathfrak{A}}\diamondsuit_i^{\mathfrak{A}}b \text{ and } \diamondsuit_i^{\mathfrak{A}}0^{\mathfrak{A}}=0^{\mathfrak{A}}.$$

A valuation to $\mathfrak A$ is a function v mapping n-modal formulas to elements of $\mathfrak A$ which is defined the usual natural way: it turns the propositional connectives to the Booleans and the modal operators to themselves. An n-modal formula φ is said to be true in an $algebraic model <math>\langle \mathfrak A, v \rangle$ if $v(\varphi) = 1^{\mathfrak A}$ holds. We say that φ is valid or holds in algebra $\mathfrak A$ (in symbols: $\mathfrak A \models \varphi$) if φ is true in all algebraic models of form $\langle \mathfrak A, v \rangle$. For any normal n-modal logic L, $\mathsf{Alg}L$ is the class of all n-modal algebras validating all formulas of L.

The class $\mathsf{Alg}[\mathbf{S5},\mathbf{S5},\ldots,\mathbf{S5}]$ is a class well-known in algebraic logic, it is the class Df_n of diagonal-free cylindric algebras of dimension n (see [1], [4]). In other words, an n-dimensional diagonal-free cylindric algebra is an n-modal algebra where (3)–(4) of the previous section hold. To obtain $\mathsf{Alg}\mathbf{S5}^n$, observe that every Kripke frame $\mathfrak{F} = \langle W, R_0, \ldots, R_{n-1} \rangle$ for an n-modal logic gives rise to the n-modal algebra $\mathfrak{A}(\mathfrak{F})$ of all subsets of W where, for every $X \subseteq W$, i < n,

$$\diamondsuit_i^{\mathfrak{A}(\mathfrak{F})} X = \{ w \in W : \exists u \in X \text{ with } w R_i u \}.$$

This way every product \mathfrak{F} of rooted (i.e., universal) **S5**-frames leads to a diagonal-free cylindric algebra $\mathfrak{A}(\mathfrak{F})$ whose elements are all subsets of some Cartesian product $W_0 \times \cdots \times W_{n-1}$ and, for any such subset X, i < n,

$$\diamondsuit_i^{\mathfrak{A}(\mathfrak{F})} X = \{ \langle w_0, \dots, w_{n-1} \rangle : \exists u \in W_i \text{ with } \\ \langle w_0, \dots, w_{i-1}, u, w_{i+1}, \dots, w_{n-1} \rangle \in X \}.$$

It is easy to see that, in general, an n-modal formula is valid in a frame \mathfrak{F} iff it is valid in the algebra $\mathfrak{A}(\mathfrak{F})$. Therefore, $\mathsf{AlgS5}^n$ is the variety generated by the above kind of diagonal-free cylindric algebras. This variety is called in the

algebraic logic literature the variety RDf_n of representable diagonal-free cylindric algebras of dimension n (see Andréka et al. [1], [4]).

A variety V of n-modal algebras has the *finite algebra property* if V is generated by its finite members. In other words, for all n-modal formulas φ , if $\mathfrak{A} \not\models \varphi$ for some $\mathfrak{A} \in V$ then there is some finite $\mathfrak{B} \in V$ with $\mathfrak{B} \not\models \varphi$. It is well-known (see e.g. [2]) that a logic L has the fmp iff $\mathsf{Alg} L$ has the finite algebra property. Now we are ready to reformulate Theorem 1 for diagonal-free cylindric algebras. Note that related results about cylindric algebras are in [8].

Theorem 3. Let $n \geq 3$, and V be a variety with $\mathsf{RDf}_n \subseteq V \subseteq \mathsf{Df}_n$. Then V does not have the finite algebra property. Namely, there is an n-modal formula φ such that

- $\mathfrak{A} \models \varphi$, for every finite $\mathfrak{A} \in \mathsf{Df}_n$, and
- there is some $\mathfrak{B} \in \mathsf{RDf}_n$ with $\mathfrak{B} \not\models \varphi$.

Proof. Consider the following quasi-equation (that is, a conjunction of finitely many equations implying one equation) Q^* of the language of semigroups (we use \circ for multiplication):

$$[(x = e \circ x = x \circ e) \land (y = e \circ y = y \circ e) \land (e = e \circ e) \land (x \circ y = e)]$$

$$\rightarrow (y \circ x = e).$$

Claim **3.1.** Q^* fails in some infinite semigroup.

Proof. For instance, consider the monoid of $\omega \to \omega$ functions with composition. It is routine to check that the function $m \mapsto m+1$ has an inverse from one side but not from the other.

Claim **3.2.** Q^* holds in every finite semigroup.

Proof. Assume that the antecedent of Q^* holds in some finite semigroup \mathfrak{S} . Since \mathfrak{S} is finite, the subsemigroup of \mathfrak{S} generated by x,y and e is a finite monoid with identity element e. Then in this finite monoid $x^k = x^\ell$ must hold, for some natural numbers $k < \ell$. Therefore, by x having a right-inverse, $x^{\ell-k} = e$ holds (with $\ell - k \geq 1$). Thus

$$y \circ x = x^{\ell-k} \circ y \circ x = x^{\ell-k-1} \circ x \circ y \circ x = x^{\ell-k-1} \circ x = x^{\ell-k} = e^{-k}$$

holds. \Box

Next, using the technique of [7], we interpret semigroups in diagonal-free cylindric algebras. Take some $\mathfrak{A} \in \mathsf{Df}_n$, and $d_0, d_1 \in A$. For any $a, b \in A$, define

$$a \diamond_{d_0 d_1}^{\mathfrak{A}} b \; = \; \diamondsuit_2^{\mathfrak{A}} \left[\diamondsuit_1^{\mathfrak{A}} (d_0 \cdot^{\mathfrak{A}} \diamondsuit_2^{\mathfrak{A}} a) \cdot^{\mathfrak{A}} \diamondsuit_0^{\mathfrak{A}} (d_1 \cdot^{\mathfrak{A}} \diamondsuit_2^{\mathfrak{A}} b) \right].$$

Given propositional variables $r_0, r_1 \in P$ and n-modal formulas ψ, χ , the n-modal formula $\psi \circ_{r_0 r_1} \chi$ is defined analogously, by taking

$$\psi \circ_{r_0 r_1} \chi = \Diamond_2 \left[\Diamond_1 (r_0 \wedge \Diamond_2 \psi) \wedge \Diamond_0 (r_1 \wedge \Diamond_2 \chi) \right].$$

Now fix some propositional variables $r_0, r_1 \in P$. For any term τ of the language of semigroups, define inductively an n-modal formula τ^+ as follows:

- for any variable x, let $x^+ = p_x$, where $p_x \in P$ and $p_x \neq r_0, r_1$, and
- $(\sigma \circ \varrho)^+ = \sigma^+ \circ_{r_0 r_1} \varrho^+$.

For any quasi-equation Q of the language of semigroups of form

$$[(\tau_1 = \sigma_1) \land \cdots \land (\tau_m = \sigma_m)] \rightarrow (\tau_0 = \sigma_0),$$

let φ_Q be the following *n*-modal formula:

$$\Box \left[(\tau_1^+ \leftrightarrow \sigma_1^+) \land \cdots \land (\tau_m^+ \leftrightarrow \sigma_m^+) \land (r_0 \leftrightarrow \diamondsuit_0 r_0) \land (r_1 \leftrightarrow \diamondsuit_1 r_1) \right] \rightarrow \\
\rightarrow \left[(\tau_0^+ \circ_{r_0 r_1} \diamondsuit_1 q) \leftrightarrow (\sigma_0^+ \circ_{r_0 r_1} \diamondsuit_1 q) \right] ,$$

where $\Box \chi$ abbreviates $\Box_0 \Box_1 \ldots \Box_{n-1} \chi$, and q is a fresh propositional variable.

Lemma 4. ([7]) Let $\mathfrak{A} \in \mathsf{Df}_n$, and $d_0, d_1 \in A$ such that $\diamondsuit_0^{\mathfrak{A}} d_0 = d_0$ and $\diamondsuit_1^{\mathfrak{A}} d_1 = d_1$. For any $a, b \in A$, define

$$a \sim_{d_0 d_1}^{\mathfrak{A}} b \quad \Longleftrightarrow \quad (\forall w \in A) \ a \circ_{d_0 d_1}^{\mathfrak{A}} \diamondsuit_1^{\mathfrak{A}} w = b \circ_{d_0 d_1}^{\mathfrak{A}} \diamondsuit_1^{\mathfrak{A}} w \ .$$

Then the following hold:

(i) $\sim_{d_0d_1}^{\mathfrak{A}}$ is a congruence of $\langle A, \circ_{d_0d_1}^{\mathfrak{A}} \rangle$, that is, for any $a, b, c \in A$, if $a \sim_{d_0d_1}^{\mathfrak{A}} b$

$$(a \circ_{d_0d_1}^{\mathfrak{A}} c) \sim_{d_0d_1}^{\mathfrak{A}} (b \circ_{d_0d_1}^{\mathfrak{A}} c) \quad and \quad (c \circ_{d_0d_1}^{\mathfrak{A}} a) \sim_{d_0d_1}^{\mathfrak{A}} (c \circ_{d_0d_1}^{\mathfrak{A}} b).$$

- (ii) The quotient algebra $\langle A, \circ_{d_0 d_1}^{\mathfrak{A}} \rangle / \sim_{d_0 d_1}^{\mathfrak{A}}$ is a semigroup.
- (iii) If $\mathfrak A$ is a simple algebra then, for any quasi-equation Q of the language of semigroups,

$$\langle A, \circ_{d_0 d_1}^{\mathfrak{A}} \rangle / \sim_{d_0 d_1}^{\mathfrak{A}} \models Q \quad implies \quad \mathfrak{A} \models \varphi_Q.$$

Now recall the quasi-equation Q^* above.

Corollary 5. φ_{Q^*} holds in every finite $\mathfrak{A} \in \mathsf{Df}_n$.

Proof. Assume that there is some finite $\mathfrak{A} \in \mathsf{Df}_n$ and $d_0, d_1 \in A$ such that

$$\mathfrak{A} \not\models \varphi_{Q^*}[r_0/d_0, r_1/d_1] .$$

It is well-known (see [4]) that every subdirectly irreducible algebra in Df_n is simple, so we may assume that $\mathfrak A$ is simple. Then $\diamondsuit_0^{\mathfrak A}d_0=d_0$ and $\diamondsuit_1^{\mathfrak A}d_1=d_1$ must hold, otherwise the antecedent of φ_{Q^*} would be false. Thus, by Lemma 4 above, Q^* fails in the finite semigroup $\langle A, \diamond_{d_0d_1}^{\mathfrak A} \rangle / \sim_{d_0d_1}^{\mathfrak A}$, contradicting Claim 3.2.

Lemma 6. φ_{Q^*} fails in some (infinite) $\mathfrak{B} \in \mathsf{RDf}_n$.

Proof. This is the similar to the argument in [7], but we sketch it for completeness. By Claim 3.1, there is some (infinite) semigroup $\mathfrak{S} = \langle S, \circ \rangle$ where φ fails. We may assume that \mathfrak{S} is a monoid. (If not then choose some $e \notin S$ and take the monoid $\mathfrak{S}^+ = \langle S \cup \{e\}, \circ' \rangle$, where $x \circ' y = x \circ y$ whenever $x, y \in S$ and $x \circ' e = e \circ' x = x$, for every $x \in S \cup \{e\}$.) Now consider the diagonal-free cylindric algebra $\mathfrak{A}_S \in \mathsf{RDf}_n$ of all subsets of S^n , and take the diagonal elements D_{02} and D_{12} of \mathfrak{A}_S defined by

$$D_{i2} = \{ \langle s_0, \dots, s_{n-1} \rangle \in S^n : s_i = s_2 \} \quad (i = 0, 1).$$

Then $\diamondsuit_0^{\mathfrak{A}_S}D_{12}=D_{12}$ and $\diamondsuit_1^{\mathfrak{A}_S}D_{02}=D_{02}$ hold. Define a map h by taking, for any $s\in S$,

$$h(s) = \{\langle s_0, \dots, s_{n-1} \rangle \in S^n : s_1 = s_0 \circ s \}.$$

It is easy to check that h is one-one and, for all $s, t \in S$,

$$h(s \circ t) = h(s) \circ_{D_{12}D_{02}}^{\mathfrak{A}_S} h(t)$$

hold. (This h is in fact the Cayley representation of the monoid \mathfrak{S} , taken in the first two coordinates of \mathfrak{A}_S .) Now, in order to show that φ_{Q^*} fails in \mathfrak{A}_S , it is enough to prove that $h(s) \not\sim_{D_{12}D_{02}}^{\mathfrak{A}_S} h(t)$ whenever $s \neq t$. To this end, take some $s \neq t \in S$ and let

$$w = \{\langle s_0, \dots, s_{n-1} \rangle \in S^n : s_0 = s \}$$
.

Let e denote the identity element of \mathfrak{S} . Then clearly $\diamondsuit_1^{\mathfrak{A}_S} w = w$, and any sequence of form $\langle e, \ldots \rangle$ belongs to $h(s) \diamond_{D_{12}D_{02}}^{\mathfrak{A}_S} w$ but not to $h(t) \diamond_{D_{12}D_{02}}^{\mathfrak{A}_S} w$, showing that they are different.

Finally, Corollary 5 and Lemma 6 prove Theorem 3.

Acknowledgments

Research supported by UK EPSRC grant GR/L85978 and by Hungarian National Foundation for Scientific Research grant T30314. Thanks to Robin Hirsch and Gábor Sági for helpful discussions.

References

- [1] H. Andréka, I. Németi, and I. Sain. Algebraic logic. In D. M. Gabbay and F. Guenthner, editors, *Handbook of Philosophical Logic*, volume II. Kluwer Academic Publishers, 2nd edition, to appear.
- [2] A. Chagrov and M. Zakharyaschev. Modal logic. Number 35 in Oxford Logic Guides. Oxford University Press, 1997.
- [3] D.M. Gabbay and V.B. Shehtman. Products of modal logics, part I. *Logic Journal of the IGPL*, 6(1):73–146, 1998.

- [4] L. Henkin, J.D. Monk, and A. Tarski. *Cylindric Algebras, Part II.* North Holland, 1985.
- [5] R. Hirsch, I. Hodkinson, and A. Kurucz. On modal logics between $\mathbf{K} \times \mathbf{K} \times \mathbf{K}$ and $\mathbf{S5} \times \mathbf{S5} \times \mathbf{S5}$. Journal of Symbolic Logic, to appear. Available at http://www.doc.ic.ac.uk/~kuag/k3undec.ps.
- [6] J.S. Johnson. Nonfinitizability of classes of representable polyadic algebras. *Journal of Symbolic Logic*, 34:344–352, 1969.
- [7] R. Maddux. The equational theory of CA_3 is undecidable. *Journal of Symbolic Logic*, 45:311–316, 1980.
- [8] I. Németi. Neither the variety of cylindric algebras nor the variety of representable cylindric algebras is generated by its finite members for dimensions greater than 2. Manuscript, 1984.