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Abstract

It follows from algebraic results of Maddux that every multi-modal
logic L such that [S5,S5,...,85] C L C S5" is undecidable, whenever
n > 3. This implies that the product logic S5 x S5 x S5 does not have the
product finite model property. Here we answer a question of Gabbay and
Shehtman by showing that S5 x S5 x S5 also lacks the ‘real’ finite model
property (fmp). We prove that every logic L from the above interval lacks
the fmp. (In algebraic setting: If V' is a variety of n-dimensional diagonal-
free cylindric algebras which contains all the representables then V' does
not have the finite algebra property.)

1 Introduction and the result

Multi-modal logics are of growing importance in many areas of computer sci-
ence, artificial intelligence, knowledge representation and reasoning, and lin-
guistics. In this paper we discuss the finite model property of n-modal logics:
propositional multi-modal logics having finitely many unary modal operators
Ooyeevy Ono1 (and their duals Og,...,0,_1). Formulas of this language, us-
ing propositional variables from some fixed countable set P, are called n-modal
formulas. For each natural number n > 1, the well-known (cf. [3]) n-modal logic

[S5,85,...,85]
~—_—————

is the smallest set of n-modal formulas which

(1) is closed under the rules of Substitution, Modus Ponens, and Necessitation
A/O;A, for i < n;

and contains, for all i, j < n,

(2) all propositional tautologies and formulas of the form
Oi(p — q) — (Qip — Big);

(3) the S5-axioms for O;:  Oyp —p, p— 0;0;p, Opp — 0;0;p;



(4) 0;0;p < 0O;0;p.

Special frames for n-modal logics are the product frames. Given Kripke frames
So = Wo,Ro), .-, 8n—1 = (Wy_1,R,_1), their product is defined to be the

relational structure
Fox X Fpo1=Wyx-xWu_1,Ro,...,Rn_1)

where, for each i < n, R; is the following binary relation on the Cartesian
product Wy x --- x W, _1:

(ugy .-y un—1)Ri (v, ..., 0n—1) iff w;Rv; and wuy = vy, for k #i.

Given Kripke complete unimodal logics L; (i < n), define the product logic
Lo X --- x L,_1 as the set of all n-modal formulas which are valid in those
product frames (Wy, Ry) X «-+ x (W,_1, R,—1) where, for each i < n, (W;, R;)
is a frame for L;. This way one can obtain new logics, e.g., for n > 3, the
product logic S5"—being non-finitely axiomatizable by [6]—is different from
[S5,S5,...,S5]. Though, it is routine to check that [S5,S5,...,S5] C S5"
holds. Also, it is not hard to see that S5" is already determined by products of
rooted (i.e., universal) S5-frames.

From now on, we always let n > 3. An n-modal logic L has the finite model
property (fmp) if for any n-formula ¢ ¢ L there is a finite model 9t such that
M = L and M = . Note that it is the same as requiring the existence of a
finite frame § with § = L and § = ¢ (see e.g. [2, Thm.8.47]). L has the product
fmp if for any ¢ ¢ L there is a finite product frame such that § = L and § £ .
Of course, the product fmp implies the fmp, but not the other way round, e.g.,
K" has the fmp (see [3]), but lacks the product fmp, for n > 3 (see [5]).

It follows from the algebraic results of [7] that every n-modal logic between
[S5,S5,...,85] and S5" is undecidable (see also section 2 below for the tech-
nique of [7]). This implies that the finitely axiomatizable logic [S5, S5, ..., S5]
does not have the fmp. Since S5" is recursively enumerable (see, e.g., [4]) and,
by the finite axiomatizability of S5, finite product frames for S5™ are recursively
enumerable, it also follows that S5™ lacks the product fmp. However, even if a
finite frame for S5™ is a p-morphic image of some product frame for S5, this
product frame cannot necessarily be chosen finite (see [5] for a counterexample).
Thus, in case of S5", the lack of fmp does not follow in an obvious way from
the lack of product fmp.

Our main result is the following theorem:
Theorem 1. Let L be a logic such that
[S5,S5,...,85] C L C S5™.
Then L lacks the finite model property, whenever n > 3.

As a corollary we obtain a negative answer to question Q21 of Gabbay and
Shehtman [3]:



Corollary 2. S5° does not have the fmp.

However, it remains open whether product logics like, e.g., K43, S43, K4 x
S4 x S5 have the fmp. Answering these questions may give some insight for
intriguing open decision problems of two-dimensional products of transitive log-
ics, such as S4 x S4, K4 x S4, K4 x K4. These logics are known to be finitely
axiomatizable (see [3]), thus if they had the fmp then they would be decidable.
Note that these logics lack the product fmp.

2 Modal algebras

In this section we reformulate and prove Theorem 1 in an algebraic setting, see

Theorem 3 below. Similarly to the unimodal case (see e.g. [2]), an n-modal

algebra is a Boolean algebra with n unary normal operators, that is, a structure
A= <A7 +Ql7 'mv 7917 12{7 0917 <>2l>i<na

7

where (A, +%, -2 —2 1% 0%) is a Boolean algebra and, for all a,b € A, i <n,
OMa4+2b) = 0%a+* 0¥ and OF0™ = 0%,

A wvaluation to 2 is a function v mapping n-modal formulas to elements of 2
which is defined the usual natural way: it turns the propositional connectives
to the Booleans and the modal operators to themselves. An n-modal formula ¢
is said to be true in an algebraic model (A, v) if v(p) = 1% holds. We say that
 is walid or holds in algebra 2 (in symbols: 2 |= ¢) if ¢ is true in all algebraic
models of form (2(,v). For any normal n-modal logic L, AlgL is the class of all
n-modal algebras validating all formulas of L.

The class Alg[S5,S5,...,S5] is a class well-known in algebraic logic, it is
the class Df,, of diagonal-free cylindric algebras of dimension n (see [1], [4]).
In other words, an n-dimensional diagonal-free cylindric algebra is an n-modal
algebra where (3)—(4) of the previous section hold. To obtain AlgS5™, observe
that every Kripke frame § = (W, Ry, ..., R,_1) for an n-modal logic gives rise
to the n-modal algebra 2((F) of all subsets of W where, for every X C W, i < n,
oM x = {weW : Jue X with wR;u}.

?

This way every product § of rooted (i.e., universal) S5-frames leads to a diagonal-
free cylindric algebra 2A(F) whose elements are all subsets of some Cartesian
product Wy x - -+ x W, _1 and, for any such subset X, i < n,

O?(S)X = {{wo, ..., wp_1) : Ju € W; with

<w0;"'7wi71>u7wi+17'"7wn71>€X}-

It is easy to see that, in general, an n-modal formula is valid in a frame § iff
it is valid in the algebra 2A(F). Therefore, AlgS5™ is the variety generated by
the above kind of diagonal-free cylindric algebras. This variety is called in the



algebraic logic literature the variety RDf,, of representable diagonal-free cylindric
algebras of dimension n (see Andréka et al. [1], [4]).

A variety V of n-modal algebras has the finite algebra property if V is gener-
ated by its finite members. In other words, for all n-modal formulas ¢, if % £ ¢
for some A € V then there is some finite B € V with B & ¢. It is well-known
(see e.g. [2]) that a logic L has the fmp iff AlgL has the finite algebra property.
Now we are ready to reformulate Theorem 1 for diagonal-free cylindric algebras.
Note that related results about cylindric algebras are in [8].

Theorem 3. Let n > 3, and V be a variety with RDf, C V C Df,. Then V
does not have the finite algebra property. Namely, there is an n-modal formula
o such that

o A =, for every finite A € Df,,, and
o there is some B € RDf,, with B = ¢.

Proof. Consider the following quasi-equation (that is, a conjunction of finitely
many equations implying one equation) @Q* of the language of semigroups (we
use o for multiplication):

[(x = eoxr = zoe) A (y = eoy = yoe) A (e = eoe) A (zoy = e)]

~ (yoz=e).
CLamM 3.1. Q* fails in some infinite semigroup.

Proof. For instance, consider the monoid of w — w functions with composition.
It is routine to check that the function m — m + 1 has an inverse from one side
but not from the other. O

CLAIM 3.2. Q* holds in every finite semigroup.

Proof. Assume that the antecedent of @* holds in some finite semigroup &.
Since © is finite, the subsemigroup of & generated by =,y and e is a finite
monoid with identity element e. Then in this finite monoid z* = zf must
hold, for some natural numbers k < £. Therefore, by « having a right-inverse,
2'~% = ¢ holds (with £ — k > 1). Thus

V4

yox = '~ Foyox = gt—*-1 f—k—1 o~k

oroyoxr =x 7 or == =e
holds. O

Next, using the technique of [7], we interpret semigroups in diagonal-free
cylindric algebras. Take some 2 € Df,,, and dy,d; € A. For any a,b € A, define

aod b = OF [T (do -* ©Fa) * OF (dy 2 ©3b)] .

Given propositional variables rg,7; € P and n-modal formulas v, x, the n-modal
formula % o,,, X is defined analogously, by taking

worohx = Oy [<>1(7“0 A ng) A <>0(’/‘1 N <>2X)] .



Now fix some propositional variables rg, 1 € P. For any term 7 of the language
of semigroups, define inductively an n-modal formula 7+ as follows:

e for any variable z, let * = p,., where p, € P and p, # 79,71, and
o (000)" =0t opy, 0t
For any quasi-equation @ of the language of semigroups of form
[(fm=01) Ao A (T =0m)] — (10 =00),
let ¢ be the following n-modal formula:

O[(r o)A A o o) Are < Gorg) A (r1 < Orry)] —

m

- [(T(T Orory <>1q) « (0—3_ Orgry <>1Q)] )
where Oy abbreviates Og0q ... 0,_1X, and ¢ is a fresh propositional variable.

Lemma 4. ([7]) Let 2 € Df,,, and dy,dy € A such that OFdy = dy and OFd; =
dy. For any a,b € A, define

awgodlb = (Vw < A) CLogod1 O%Lw = bogo(h O%Lw .
Then the following hold:

(i) A;Lgodl is a congruence of (A, Ogod1>’ that is, for any a,b,c € A, if a Ngodl b
then

A A A A
(a Ododl C) Ndodl (b Ogodl C) a’nd (C Ododl a) Nd()dl (C Ozlgdl b)'

(i) The quotient algebra (A, 0% ) /~3 4 is a semigroup.

(i) If A is a simple algebra then, for any quasi-equation Q of the language of
Semigroups,
(A, 0300, /ioa, E Q implies 2 = pq.
Now recall the quasi-equation Q* above.

Corollary 5. @g- holds in every finite A € Df,,.

Proof. Assume that there is some finite 2{ € Df,, and dy,d; € A such that

2 pg-[ro/do,r1/d1] .

It is well-known (see [4]) that every subdirectly irreducible algebra in Df,, is
simple, so we may assume that 2 is simple. Then Ogdy = do and O%d; = d;
must hold, otherwise the antecedent of - would be false. Thus, by Lemma 4
above, Q* fails in the finite semigroup (4, O§0d1>/~§[0d1, contradicting Claim 3.2.

O

Lemma 6. @g« fails in some (infinite) B € RDf,.



Proof. This is the similar to the argument in [7], but we sketch it for complete-
ness. By Claim 3.1, there is some (infinite) semigroup & = (S, o) where ¢ fails.
We may assume that & is a monoid. (If not then choose some e ¢ S and take
the monoid &+ = (S U {e},o’), where z o' y = x oy whenever x,y € S and
xoe=eo x=ux, for every z € SU{e}.) Now consider the diagonal-free cylin-
dric algebra 2g € RDf,, of all subsets of S™, and take the diagonal elements Dz
and Djs of g defined by

Di2:{<503-~-a5n—1> e S"™ 51;:82} (120,1)

Then O?SDU = Dj2 and <>%lSDoz = Dyz hold. Define a map h by taking, for
any s € S,
h(S) = {<807"'7Sn—1> S Sn ST = 8008} .

It is easy to check that h is one-one and, for all s,t € S,
h(s o t) = h(s) 0%, 1, h(t)

hold. (This A is in fact the Cayley representation of the monoid &, taken in the
first two coordinates of 2g.) Now, in order to show that ¢g« fails in g, it is

enough to prove that h(s) 76%?2%2 h(t) whenever s # t. To this end, take some
s#t €S and let

w={(s0,.-.,8n-1) €S™ : so=5}.

Let e denote the identity element of &. Then clearly 0?‘5 w = w, and any

2 2
sequence of form (e, ...) belongs to h(s) op® p w but not to h(t) op® p w,

showing that they are different.

Finally, Corollary 5 and Lemma 6 prove Theorem 3. O
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