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Abstract

The general methodology of “algebraizing” logics (cf. [2], [4]) is used here for combining
different logics. The combination of logics is represented as taking the colimit of the constituent
logics in the category of algebraizable logics. The cocompleteness of this category as well as
its isomorphism to the corresponding category of certain first-order theories are proved.

In this paper we translate the “combining logics” problem to the problem of “combining” certain
theories of usual first order logic. We prove that the category of a special class of logics, called
algebraizable logical systems (see Def. 1.1 below), is isomorphic to the category of the corresponding
first order theories. We also show that these categories are cocomplete. Some directions in which
the approach chosen can perhaps be generalized are pointed out in the last section.

1 Preliminaries

As a set theoretic framework we presume any set theory which is suitable for the foundation of
category theory. For basic category theoretical notions such as category, object, morphism, small
diagram, cocone, coproduct, colimit, coequalizer, etc. we follow the usage of MacLane [10].

Our terminology follows the usual standards concerning classical first-order logic and basics of
universal algebra. For notions not defined but used here, see e.g. Monk [11], Burris-Sankappanavar
[6].

w denotes the set of natural numbers. An algebraic similarity type is a function ¢ mapping
some nonempty set into w. An element f of the domain dom(t) of ¢ with ¢(f) = k is called a
k-ary function symbol of type t. t-type algebras are structures (in the usual sense) of the algebraic
similarity type ¢. Throughout the paper we fix an infinite set X = {xg, z1,22,...} of variables.
x,y will always denote one of these variables. The sets T'rm; of t-type terms, Fmla; of t-type (first
order) formulas, having variables from X, are defined as usual. A k-ary term is a term containing
at most k-many distinct variables. 7(z;,,..., ;) denotes that the variables occurring in 7 are
among Z;,,...,x;, . oubstitutions are functions o : X — T'rm; as usual, which extend to maps
from terms to terms the natural way. For any substitution o and term 7(z;,,...,;, ), o(7) will
also be denoted by 7(x;, /o(xi,), ..., xi, Jo(x;,)). A binary term A(z,y) will also be written as
xAy. Trm, denotes the t-type world-algebra (absolutely free algebra) generated by set X.

We will use symbol “E” for both validity (in models) and (semantical) consequence relation of
standard first-order logic. For any set I' C F'mlay,

Modt(F)dg{A : A is a t-type algebra and (Vp € T') A = ¢}.

A t-type quasi-equation is a t-type formula of form (m = H{ A--- AT =7, — T = 1)),
where 79,7, ..., Tk, 7, € Trmy. A t-type quasivariety is a class K of ¢-type algebras such that
K = Mod(T') for some set I" of t-type quasi-equations. For any class K of t-type algebras, Quar(K)
denotes the generated quasivariety i.e., the smallest quasivariety including K.
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Algebraizable logical systems defined below are the same as “algebraizable deductive systems”
of Blok-Pigozzi [4], or “algebraizable 1-deductive systems” of [5], or the semantical consequence
relation of “consequence compact strongly nice general logics” of Andréka et al [2].

DEFINITION 1.1 A pair £ = (Cn(L), &=,) is called an algebraizable logical system iff Cn(L)
is an algebraic similarity type and =, is a binary relation between sets of Cn(L)-type terms and
Cn(L)-type terms, satisfying conditions (1-6) below. Elements of the domain of Cn(L) are called
the logical connectives of L. The elements of set X (of variables) are called in this context atomic
formulas (or propositional variables) of L. Similarly, if ¢ is a (k-ary) term of type Cn(L) then
@ is also called a (k-ary) formula of L, and the set Trmeny (c) is also called as F'm(L) when it is
regarded as the set of all formulas of L. =, is called the consequence relation of L.

(1) (Vo € Fm(L))(VT C Fm(L)) peT = Trpp.
(Vo € Fm(L))(V[,A C Fm(L£)) T CA and Divpp = A,
(Vo € Fm(L)

)

(2)
3)
(4) (Vo e Fm(L
(5)
(6)

)
)
3 YVI,LAC Fm(L)) Twepand (VY €T) A,y = Aw,p.
YVI' C Fm(L)) Tw,e = (Ffinite IV CT) IMix .
)

5) (Vo € Fm(L))(VI' € Fm(L))(V substitution 0) Tix,p = {o(@) : ¥ € T} ix,po(p).

6) There are some m,n € w, unary formulas g, ..., &n—1 and &g, . .., dn—1, and binary formulas

Ag...,A,_1 of L such that properties (i-v) below hold for any o, v1,..., @k, ¥, %1, ..., Yk,
X € Fm(E), and for any i < n.

(1) weplip,
(i) {pAj¥:j <npi A,
(it) {@Aj¥,vA;x 1 < n}pplAx,
(iv) (V k-ary ¢ € dom(Cn(L))),
{181, .. oAt j <nlppc(er, ... 06) (P, ..., Yk),
() (s <m) {phimpes(@Aid(9) and  {e(@)A0a(0) 5 <mj < n}impg,

A sequence (g0,...,Em—1,00,--,0m—1,20,...,A,_1) satisfying (6)(i—v) is called an alge-
braizator for L. O

Some simple examples for algebraizable logical systems are inconsistent logics (where It~ .
holds for any T, ), and usual propositional logic (with algebraizator eo(¢) = (¢ — @), do(p) = ¢
and pAgY = (¢ < 1)). Other examples (also for non-algebraizable logical systems) can be found
in e.g. Blok-Pigozzi [4], Andréka et al [2], [3], [14].

Notation 1.2 For any I'; A C Fm(L), if A # () then I'i=, A et (Vip € A) Tim 9.

We shall use (£,0,A) as an abbreviation for (50, ey Eme1500y s Om—1,D0, ..., Ap_1). Simi-
larly, e.g. £(¢)Ad(1p) abbreviates the set {e;(p)A;6; (v ) i <m, j <n} of formulas. Or, on the
first order logic side, we write e.g. &(z) = §(z) — ( ) = 6(y) instead of the set

{\ i) = 6i(2) — ;) = 6;(y) = j<m}

<m

of quasi-equations. Related abbreviations will also be used without further explanation. O

DEFINITION 1.3 Let £ be an algebraizable logical system and let (£,8, A) be an algebraizator
for £. For any I' U {p, ¥} C Fm(L), let

ef x
Y =r Y PN IixppAY.

Then, by condition (6)(i-iv) of Def. 1.1, =r is a congruence relation on I'rmg,, ). Let

Alg(£)E Quar({Trme, o)/ =r = T € Fm(£)})
that is, Alg(L) is a class of algebras (first order structures) of similarity type Cn(£). O
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The definition of Alg(£) does not depend on the choice of the algebraizator (z,5,A) as the
following proposition shows.

Proposition 1.4 (cf. Blok-Pigozzi [{], Theorem 2.15) o
Let L be an algebraizable logical system and let both (€,0,A) and (€',d', A"} be algebraizators for
L. Then for any formulas ¢, of L,

AP oA"Y and AP pAY. [ ]

Thus, for any algebraizable logical system £ there is a uniquely determined quasivariety Alg(L).
In the other direction, there are different algebraizable logical systems with the same “correspond-
ing” quasivariety, see e.g. Blok—Pigozzi [4], Ch.5.2.4 for an example.

The following “back and forth” theorem establishes the basic connection between a logic £ and
its algebraic (i.e., usual first order) “translation” Alg(L).

THEOREM 1.5 (cf. Blok-Pigozzi [4] Thms.2.4, 4.7, 4.10 and Andréka et al [2] Thm.5.2.1)
Let L be an algebraizable logical system, and let (€,0,A) be an algebraizator for L. Then

(i) for any formulas po,¢1,..., 0k of L,

{onobimppe = AgL) =\ aps) =68(ps) — &(p0) = 8(w0);

1<s<k
(it) for any formulas 19, T1,..., Tk, 70, T1,-- ., T Of L,
AgLYEni=mAAmpe=1], — 10=1) <= {nA7, .. . AT} 70AT). [ |

2 The category of algebraizable logical systems
DEFINITION 2.1

(i) Let Ly, Lo be algebraizable logical systems. A function I : dom(Cn(Ly1)) — Fm(L2) is called
a logic-translation of L1 into Lo iff for any k-ary connective ¢ € dom(Cn(L1)), I(c) is a k-ary
formula of £5. A logic-translation always induces a function I : F m(Ly) — Fm(L2) in the
following natural way:

— for any propositional variable z, I (x) def x;

— if ¢ is a k-ary connective and (g, ..., pr—1 are formulas of £; then

I(e(po.-- -, or1)) E 1(e)(@o/I(p0). - wims [ I(o41):
I can be extended to any set I of formulas of £; by taking I(T') def {I(p): peT}.
(ii) A logic-translation I is called an (L1, L2)-interpretation iff
(a) for any I' U {¢} C F'm(L1),
T = 1) g, 1(p);
(b) if (£,8,A) is an algebraizator for £, then (I(£),1(5),I(A)) is an algebraizator for Ls.
(iii) We define an equivalence relation on (£, £2)-interpretations as follows.

I~Jg &L (Vo € Fm(Ly)) 2z£2j(§0)A2j(sﬁ).

(Here (2,02, As) is an arbitrary algebraizator for £o. By Prop. 1.4 and Def. 1.1(3), the
definition of ~ does not depend on the choice of the algebraizator.)

Let [I] denote the ~-equivalence class of I.
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(iv) For any algebraizable logical system L, let id, be the logic-translation of £ into £ defined
by idz(c) ef c(zg,...,Tk—1), for each k-ary connective ¢ € dom(Cn(L)). O

Lemma 2.2

(i) Let L1,Ls,L3 be algebraizable logical systems, let I,1' be (L1, L2)- -interpretations and let
J, J" be (La, L3)-interpretations such that I ~ 1" and J ~ J' hold. Then JoI and J' oI are
(L1, L3)-interpretations, and JoI~Jol (where o is the usual composition of functions).

(ii) For any algebraizable logical system L, idr is an (L, L)-interpretation and for any (L, L')-
interpretation I, I oidy ~ I ~idprol.

Proof. Since ({A ol) = J oI, it is easy to check that J oI is an (L1, L3)-interpretation. To prove
(i), let (&;,0;,A;) be an algebraizator for £; (i=1,2,3), and let ¢ be an arbitrary formula of £;.
Then, by I ~ I,

W, [(p) Al () = (J is an interpretation)

o, J(I()AT (9)) =

zzﬁs(jo D(p)J(A2) (T o I') () = (Prop. 1.4 and Def. 1.1(3))
Wiy (o I)(0)As(J o I')(¢)

On the other hand, by J ~ J',
e, JI()AT (I'(9)) <= g, (JoI)(p)As(J o I') ().
Thus, by Def. 1.1(3) and (6)(iii)), ., (J o I)(¢)As(J" o I') () follows.

The proof of (ii) is obvious. [ |

DEFINITION 2.3 The category ALOG of algebraizable logical systems is defined as follows.

Objaroc def {L : L is an algebraizable logical system}

MoravLog(£L1, L2) def {[I] : I is an (L1, L2)-interpretation},
for any £1, Lo € ObjALOG
ID, def [idr], for any £ € Objaroc
)= [Jo 1], for any L1, L2, Ls € Objaroc:
[I] S MOTALoc;(ﬁl,ﬁg), [J] S MOTALO(;(ﬁz,ﬁg).
Then, by Lemma 2.2, ALOG is indeed a category. O

Now we proceed with making preparations to formulate the “algebraic” counterpart of category
ALOG.

DEFINITION 2.4

(i) Let ¢t be an algebraic similarity type and let K be a t-type quasivariety. Let €g,...,&m—1,
0y ++;0m—1 be unary and Ag...,A,_1 be binary t-type terms for some m,n € w. Then
(€,0,A) is called a deductivizator of K iff

K &(zAy) = 6(zAy) « 2=y

holds.



(ii) We define an equivalence relation on deductivizators of K as follows:

(,5,A) =g (£,5,A) &L KEiz) =) < &) =5 ().

Let [¢,6, Alk denote the ~k-equivalence class of (£,,A). O

Proposition 2.5 Let £ be an algebraizable logical system and let (£,5,A), (£,6',A") be two alge-
braizators for L. Then

(i) (£,6,A) and (,0',A’) are both deductivizators of Alg(L);

(i1) (cf. Blok—Pigozzi [4], Theorem 2.15)
(8,0, A) ~a1g(r) (€,0", A).

Proof.

(i): By Def. 1. 1( )(v), Ay E(x y)Aé(mAy) and &(xAy)Ad(xAy) =, rAy. Thus, by Theo-
rem 1.5(ii), Alg(£) = é(xAy) = 0(xAy) « z=1y.
(6

(ii): By Def. 1.1(2),(6)(v), &(z)Ad(x) re &' (x) A0 (x) and &' (x) A0 (x) v E(x)Ad(x). Thus, by
Def. 1.1(3) and Prop. 1.4, &(z)Ad (

fore, by Theorem 1.5(ii), Alg(ﬁ) Eéx)=0(z) <« &

|

DEFINITION 2.6 Let t1, t2 be algebraic similarity types. A function ¢ : dom(t1) — Trmy, is
called a term-translation of t1 into to iff for any k-ary t;-type function symbol f, +(f) is a k-ary
term of type t2. A term-translation always induces a function 2 : Trm;, — Trm,, and a function
7: Fmlay, — Fmla, as follows:

for any variable z € X, i(z) def x;

— if f is a k-ary function symbol of type t; and 7, ..., 7k—1 € Trmy, then
~ def ~ ~
W(f(r0,- - mh=1)) = W) (wo/i(70), - - -y Th—1/U(Th-1));

— for any 9,71 € Trmy,, i(1o = 71) def (i(10) = i(m));

— for any ¢, v € Fmlay,,
i(—p) € —i(p), i(p V) Eilp) Vi), i(3wp) € 3z i(p).

Similarly, the functions 72 and 7 can be extended to sets of terms and formulas, respectively, by
stipulating that for 7 C Trmy,, i(T) ef {i(r) : 7 € 7} and for ' C Fmlay,, i(T) def {i(¢) : p €T}
O

Remark 2.7 A logic-translation I of some logic (Cn(L1), =) into some logic (Cn(Lz), *=,)
is in fact a term-translation of similarity type Cn(L;) into Cn(L2). Moreover, since formulas of £;
(i = 1,2) can be considered as Cn(L;)-type terms, the function I induced by I as a logic-translation
is the same as I induced by I as a term-translation. O

Lemma 2.8 If1 is a term-translation of t; into ty then for any T'U{¢} C Fmlay,,
'y = D) Ei(p).

Proof. Tt is easy to check that 7 “preserves” the axioms and rules of any calculus for first-order
logic. ]



DEFINITION 2.9

(i) For n = 1,2, let t,, be an algebraic similarity type, let K,, be a t,-type quasivariety and

let (&,,6n,A,) be a deductivizator of K,,. Let A, def (tn, Ky [Ens 0n, Ak, (n=1,2). A

term-translation 1 from #; into ts is called an (A, As)-interpretation iff

(a) for any ¢ € Fmlay,,
KiEy = KilEilp);

(b)

(i(1),2(01),i(A1)) ~xk, (E2,02, Ag).

We note that this definition is sensible because, by (i)(a), (i(€1),4(61),2(A1)) is a de-
ductivizator of Ks.

(ii) We define an equivalence relation on (A;,.As)-interpretations as follows:

1) L for any 7 € Trmy,, Ko (1) = j(7).

Let [[2]] denote the ~-equivalence class of s.

(iii) Let A o (t,K, [, 6, Alk) as above. Let id4 be the term-translation of ¢ into ¢ defined by

ida(f) def f(zo,...,xK_1), for each k-ary function symbol f € dom(t). O

We note that the function 7 induced by an (A;, As)-interpretation is a special case of the well-
investigated notion of “interpretation between first-order theories”, cf. e.g. Monk [11], Andréka—
Gergely—Németi [1], van Benthem—Pearce [15], Gergely [8], Németi [12], [13].

The following lemma is an easy consequence of basic properties of equational logic.
Lemma 2.10

(i) Let 1,7 be (A1, As)-interpretations and let 3,7 be (A, Ag)-interpretations such that v ~ o/
and 3= 7 hold. Then jor and J o4/ are (A1, As)-interpretations, and jor~ j od'.

(ii) id 4 is an (A, A)-interpretation, and for any (A, A')-interpretation 1, 1oids ~ 1 =~ ida o1m

DEFINITION 2.11 The category QVAR of logic-generated quasivarieties is defined as follows.

Objqvar def {A: A= (t,K,[56,A]k),t is an algebraic similarity type,
K is a t-type quasivariety, and
(£,0,A) is a deductivizator of K}

Morqvar (A1, A2) def {[[#]] : ¢ is an (A1, .A3)-interpretation},

for any Ay, A2 € Objqvar
1D 4 def [[id4]], for any A € Objqvar

6] = [Goall,  for any A, As, As € Objquar,
[l]] € Morqvar (A1, A2), [[J]] € Morqvar(As; As).

Then, by Lemma 2.10, QVAR is indeed a category. O



3 Isomorphism
THEOREM 3.1 ALOG and QVAR are isomorphic categories.

Proof. To prove the theorem, we define functors F; : ALOG — QVAR and F5 : QVAR — ALOG,
and prove that (i-iv) below hold.

(i) for any £ € Objavoa, Fa(Fi(L)) = L;

(i) for any A € Objqvar, Fi(F2(A)) = A;

(iii) for any L1, Ly € Objaroa, [I] € Moravoc (L1, Ls), Fa(Fi([1]) = [I];
(iv) for any A1, Ay € Objqvar, [[1] € Morquar (A1, As), Fi(Fa([]]) = [[2].

Step 1. The definition of functors Fj, F5 on objects. o
First, let £ be an algebraizable logical system and let (£,0, A) be an algebraizator for £. Then let
def _ s =
Fi(L£) = (Cn(L), Alg(L), 5,8, A gt

Note that this definition is sensible by Prop. 2.5.

Second, to define functor Fh, let A € Objqvar, A = (t,K,[£,6,Alx). Then

def
Fy(A) = (t, =g, a),

where for any T'U {¢} C Trmy,

I W, (A)P <d:6f> there is some finite IV C T such that

Ki= A &) =8v) — &(e) =3(p).

Yper’

By Def. 2.4(ii), this definition is independent from the choice of representative (£, 5, A) from the
class [£,0, Alk.

We show that F5(A) is an algebraizable logical system and
(£,8,A) is an algebraizator for Fy(A). (1)

Indeed, conditions (1-5) of Def. 1.1 hold for F5(.A) by some basic properties of first-order logic.
Since (£,0,A) is a deductivizator of K, condition (6) of Def. 1.1 holds for F»(.A) and (&,9,A)
because of basic properties of equational logic.

Step 2. The proofs of statements (iii).

For (i): We show that for any algebraizable logical system £ = (Cn(L), =), Fo(F1(L)) = L

holds. Let (£,0,A) be an algebraizator for £, and let Fy(Fy(L)) def (Cn(L), ='). Then for any

ru{e} € Fm(L),
M=o <= (by defs. of Fy, F3)

(31" C T, TV is finite) Alg(L) /\ E() =6() — &(p) =6(p) <= (by Thm. 1.5(i))
pel”

(30 C T, I is finite) [Mivpp <= (by Def. 1.1(2),(4))

'~ .



For (ii): Let A = (t,K, [&,0, Alk). We show that I} (F»(A)) = A. By (1) above, it is enough to
show that K = Alg(F3(A)) holds. To this end, let ¢ be an arbitrary ¢-type quasi-equation of form
=T N ATy =1 — T9=1). Then, by Theorem 1.5(ii),

Alg(Fa(A) Eq <= {nA7,... AT} R e ) T0AT
deloll = /\ (1 AT]) = 6(1;AT]) — E(ToAT) = S(ToATY)

1<i<k
— KEg,

since (¢,6,A) is a deductivizator of K.

Step 3. The definition of functors Fj, F> on morphisms.
First, for any (L1, £2)-interpretation I, let

Fi({1]) = [[1]).
We have to show that this definition is sensible that is,
(a) if I is an (L1, Lo)-interpretation then I is also an (Fy(L1), F1(L2))-interpretation;
(b) for any (L1, Ls2)-interpretations I, J, if I ~ J then also I ~ J.

Let (£,0;,A;) be an algebraizator for £; (j = 1,2).

For (a): First, we have to show that for any ¢ € Fmlacyc,), “Alg(L1) | ¢ = Alg(L2) = I(p)
holds. By Lemma 2.8, it is enough to prove this statement for quasi-equations, since Alg(L1) = ¢
implies that there is some set I' of quasi-equations such that Alg(£,) =T and I' |= ¢ hold. Thus,
assume that Alg(L£,) = (1 =7 A+ AT, =7, — 70 = 73). Then, by Theorem 1.5(ii),

{nAT], ... T T,;}?%L 705176 =
{I(r A7), '7j(TkAlTk)}z Jmdiry) =
{I(r) [ ANI(T), ..., I(7) (A ) ()} o, [(r0)[(A1)I(75) <= (by Prop. 1.4)

I(A
{I(r)AgI(7]),. f ) Aol (Tk)}2~[; I(10) Aol (T) <= (by Theorem 1.5(ii))
Alg(L) I(Tl m

Second, by Def. 2.1(ii)(b), (I(21),1(8,),1(A,)) is an algebraizator for L. Therefore, by Prop. 2.5,

(I(21),1(61), 1(A1)) ~a1g(c) (B2, 02, Do)

(
N AT =T4 — To = T4)-

holds, as needed.
For (b): Assume I ~ J. Then =/, I(1)AyJ (1), for any T € Fm(Ly) = Trmey(z,)- Then, by

Theorem 1.5(ii), Alg(£2) b= I(7) = J(7) holds, proving I ~ J.

Next, let Ai, As € Objqvar, Ac = (tk, Kk, [Ek, 0k, Aklk,) (K = 1,2). For any (A, As)-
interpretation 1, let

F([[) € [)-

We have to show that this definition is sensible that is,
(c) if 2 is an (Aj, Ag)-interpretation then 1 is also an (Fy(A;), F5(Asg))-interpretation;

(d) for any (Aj,.As)-interpretations ¢, 7, if + /= 7 then also ¢ ~ 3.



For (c): First, by Remark 2.7, we have to show that for any T'U {p} C Fm(Fa(A1)) = Trmy,,
Trpu)p = ) ™p,a,)i(p)” holds. Now assume that I'txp,(4,)¢. Then, by definition,
there is some finite IV C I" such that

Ki = /\ g1(Y) =01(¥) — &1(p) = 1(p)

per”

= Kk N\ a@)=a@) — &) =d(p)

pel’

Kol N i) =i61(v) — i(E1(p)) = i(51(p))

pel”

Kb\ i(2)G(%)) = iG)GEW) — i(E)6E(0) = iE1)(i(2)

pel”
Ko b N\ &00(0) = 6:20i(1) — &(i(p)) = da(ilp))
el
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Second, let (£, 0, A) be an arbitrary algebraizator for F5(A;). We have to show that (i(¢),i(0), i(A))
is an algebraizator for F3(Az2). By (1) above, (£1,01, A1) is also an algebraizator for F5(A;), thus,
by Prop. 2.5, (£,0,A) and (&1, 01, A;) are both deductivizators of Alg(F(A;)) with

(8,0, A) ~A1g(FyAy)) (E1,01,A1).

By statement (ii) above, Alg(F2(A;)) = Ky, thus (5,5, A) ~k, (51,61,A1> ‘holds. Since 7 is an
(A1, Az)-interpretation, this implies that (i(£),%(6), (A)> nd (i(£1),2(01),4(A1)) are both deduc-
tivizators of Ko and (i(&),3(5),3(A)) ~k, (i(£1),4(01),4(A1)). Now by (1) again, it follows that
(i(£),4(0),i(A)) is an algebraizator for Fy(Asz).

For (d): Assume = 7, and let ¢ € Trm;, = Fm(Fz(A1)). Then Kq |= i(¢) = j(¢) holds. Thus,
by (&2, 02, As) being a deductivizator, Ky = &2(i(0)A2i(¢)) = 62(i(0)A2j(¢)) follows. Then, by
the definition of Fy, =5, 4,)i(¢ )A27(¢p), proving 2 ~ 7.

The proofs of statements (iii) and (iv) above are immediate from the definitions of F; and F5.

We have proved that ALOG and QVAR are isomorphic categories. ]

4 Cocompleteness
THEOREM 4.1 QVAR is a small-cocomplete category (i.e., all small colimits exist in it).

The proof uses the following lemma.

Lemma 4.2 (cf. e.g. MacLane [10], p.109)
If a category has all coequalizers and all small coproducts then it is small-cocomplete.

Proof of Lemma 4.2. Here we give the sketch of the proof in order to illustrate that colimits in
general are indeed “computable” if coequalizers and coproducts are given.

Let a small diagram D be given. Let <017iA>AeObjp be the coproduct cocone of all the ob-
jects of D. Let M denote the set of those objects of D which are domains of some morphisms
of D, and let (O2,ja) .0 be the coproduct of M. Then the two cocones (O1,ia) 4.0 and
(01,iBm>A€MVB€ObjD7m€MOTD(A7B) induce two morphisms f and g from Os to O;.

Ef)(VA e M) fja=ia
(Flg)(VA € M)(VB € Objp)(¥Ym € Morp(A, B)) gja =ipm



It is proved in MacLane [10] that the coequalizer of diagram (O1, Oa, f, g) equals to the colimit of
diagram D. ]

Proof of Theorem 4.1. We give the small coproducts and the coequalizers in category QVAR.

Let D be a small diagram in QVAR with Objp = {A; : s € S} = {{ts,Ks, [E5, 05, As]k,) : s € S},
for some set S, and having no morphisms. For each s € S, let Axs C F'mla;, be a set of ts-type
quasi-equations such that Mod;, (Azs) = K. Let

¢ 4ef L—Ij ts (L—_Ij denotes disjoint union)
ses
Az Y Ay U{(E, (1) = 6, (2)) = (B (@) = 80s(2) 51,5 € S})
ses
K Lf Mod;(Ax).

Then for any s1,52 € S, (€s,,0s,,As,) ~K (Fsy, 055, As,). Now let s € S be arbitrary and let

[57 5_5 A]I{ déf [557 gs; AS]K

Claim 4.2.1 ((t,K, [£,6, Alk), [[id4.]]),cg is the coproduct of D.

Proof of Claim 4.2.1. Let A Lt (t,K,[&,6,Alk) and A’ e {#' K [¢,0,A'lg:). Assume that
(A’ [[75]]) seg is a cocone of D. We have to prove that there is a unique H € Morqvar(A, A’)
such that (Vs € S) Hl[ida,]] = [[75]]-

A I H

([id.a.]] ‘ [[7s]]

S

AI

To this end, let h : dom(t) — Trmy be the following function. For any s € S, f € dom(ts),

def

h(f) = 2s(f).
Then h is a term-translation of ¢ into ¢ with h o ida, = 35, for any s € S. We prove that
(a) his an (A, A’)-interpretation;
(b) for any (A, A')-interpretation b’ with b/ o ida, ~ 75 (s € S), h ~ h’ holds.

For (a): Since j, is an (As, A’)-interpretation, (&', A') ~k/ (35(85),75(s), 3s(As)) holds, for
any s € S. Therefore, for any s1,s2 € 5,

(G52 (1) D51 (85, s (5_1)>— + (Js2(52),J. 2(5) 2(ASZ)> Le.,
KM (s, (B ) (@) = Jsy (05,)(2)) = (o (E5) () =

Now let ¢ € Fmla; and assume K |= ¢. Then Az = ¢ thus, by Lemma 2.8,
h(Az) = h(e). (3)

10



By definition,

h(Az) = [H h(ida, (Az,)) U

ses
U{(jsl (ésl)(‘r) = jsl (551)(‘1')) A (jsz (582)(‘@) = jsz (852)($)) D 81,82 € S}

Now, since (Vs € S) hoida, = j, and j, is an (As, A')-interpretation, (2) implies that K’ |= h(Az).
Thus, by (3), K" |= h(p) follows, as needed.

For (b): Let h' be an (A, A')-interpretation with 4’ oida, ~ j5 (s € S). Then for any s € S,
Ts € Trmy,,

K e (I oida,) (7s) = Js(7s)-
In particular, for any k-ary f € dom(ts),

K’ ): hl(f(an SRR :Ek—l)) = js(f(‘r()a s axk—l))-
By the definition of h, for any s € S, for any k-ary f € dom(ts),

K’ ': B(f(an SRR xk—l)) = js(f(‘r()a s awk—l))
also holds. Now, by induction on the structure of t-type terms, it follows that for any 7 € Trm,,
K' = 1 (r) = h(r),

proving h' = h.
Thus, by (a) and (b), H & [[7]] is the unique morphism with H[[id4,]] = [[7s]] (s € S), proving

Claim 4.2.1. [ |

Now let A; = (t;,Ki, [6i,0i, As]k,) (i = 1,2) be two objects of QVAR, and let [[A]],[[g]] €
Morqvar(Ai, A2). Consider the following diagram &.

[[A]]

As

[[9]]

Let Azy C F'mlas, be a set of to-type quasi-equations such that Mody, (Aze) = Ka, and let

Az ¥ Az, U {h(f(z0,...,2k-1)) = §(f(x0s...,2k_1)) : f € dom(t) k-ary}
K % Mod,, (Az).
Claim 4.2.2 ((t2, K, [£2, 62, As]k), [[id,]]) is the colimit of .

Proof of Claim 4.2.2. First, it can be proved, by induction on the structure of ¢;-type terms,
that for any 7 € Trmy,, K = h(r) = §(r). Therefore, since (id, o h)" = h and (ida, o g)" = §,
[[id,]][[1] = [[ida,]][[g]] follows.

Second, let A def (t2, K, [£2, 02, As]k) and take an object A’ def ' K [,6,Allk) of QVAR
and some [[J]] € Morqvar(Asz, A") with [[7]][[~]] = [J]][[g]]- We have to show that there is a unique
I € Morqvar (A, A’) such that I[[id4,]] = [[1]]-

[[]
Aj As

9]
% i)

!’

B ————

el
We show that I %' [[7]] is an appropriate choice that is,

11



(c) 7is an (A, A')-interpretation;
(d) for any (A, A’)-interpretation j’ with 7 oida, ~ 3, 7 = 7 holds.
For (c): First, since 7 is an (Asg, A’)-interpretation,
(j(&:Q)aj(gQ)aj(AQ)) =K/ (g/’g/aA/> and
K' = j(Axs). (4)
Second, since [[7]][[]] = [2)][lg]], thus for any k-ary function symbol of type i,
K’ ': j(h(f(‘TOa s TR—1))) = j(g(f(l'o, s ’xk—l))) —
K" = J(h(f (@0, - -, 2k—1)) = §(f (20, - - -, Tk-1)))- (5)

Now let ¢ € Fmlay, and assume K = ¢. By Lemma 2.8, 7(Ax) = j(¢) holds. Therefore, by (4)
and (5), K' = j(¢) follows.

Item (d) can be proved analogously to item (b) in the proof of Claim 4.2.1 above. [ |
We have proved that small coproducts and coequalizers exist in category QVAR. Now, by
Lemma 4.2, all small colimits exist in QVAR. |
Corollary 4.3 ALOG is a small-cocomplete category. ]

We note that though colimits always exist in ALOG, they are not always “interesting”. E.g.
if £4 and Ly are two different algebraizable logical systems with Alg(L£;) = Alg(L2) then their
coproduct in ALOG is an inconsistent logic.

The proof of Theorem 4.1 also yields the following result.

Corollary 4.4 Let D be a small diagram of QVAR, having objects (ts,Ks, [Es, s, As]k,) for some
set S, and having arbitrary morphisms. Let (t,K, [, 6, Alx) be the colimit of D. If for each s € S,
Ks is a finitely axiomatizable quasivariety then K is also finitely axiomatizable. [ |

From the point of view of logics, this corollary means that any combination of finitely axioma-
tizable logics' is also finitely axiomatizable.

5 Discussion

In this paper only the first steps have been taken toward a systematic study of combining arbitrary
logics by turning them to usual first order logic. Investigation can be extended to the study of
categories of logics, where e.g. the consequence relation is not compact ((4) of Def. 1.1 is missing);
or where condition (6)(v) of Def. 1.1 is missing (called congruential logics in Blok-Pigozzi [4]); or
where condition (6) of Def. 1.1 is missing altogether (called structural logics in [4]).

An even more ambitious task is to develop the category theoretic “reconstruction” of combining
logics which are given not merely with their consequence relations but also together with their
semantics. (Algebraization of these kinds of logics is given e.g. Andréka et al [2], [3], [14].) This
kind of “modelling” should be capable to reconstruct how the semantics of a combined logic is
built up from the semantics of its “components”.

Acknowledgement. Thanks are due to Dov Gabbay for inspiring this work by his lectures on
fibred semantics. We are indebted to Istvan Németi and Ildiké Sain for motivating ideas. Thanks
go to Szabolcs Mikulds and Andrés Simon for stimulating discussions, comments, suggestions. We
are greatful to the editor for his encouragement.

1 4logics admitting finite Hilbert-style inference systems” in Andréka et al [2], or “finite deductive systems” in
Blok—Pigozzi [4]
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