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Modal logics and their models have been used to speak about and represent topological
spaces since the 1940s [22, 23, 16, 17]. Examples include Tarski’s programme of algebraisation
of topology (“of creating an algebraic apparatus for the treatment of portions of point-set
topology,” to be more precise) which involved modal logic S4 [17], and the use of the extension
of S4 with the universal modality (and its fragments) for spatial representation and reasoning;
see, e.g., [5, 18, 7, 8, 1, 9] and references therein.

Metric spaces are even more important mathematical structures that are fundamental for
many areas of mathematics and computer science (recent examples include classification in
bioinformatics, linguistics, botany, etc. using various similarity measures). A natural research
programme is then to find out to which extent modal-like formalisms can be useful for speaking
about metric spaces. Such a programme was launched in 2000 [21, 13, 14].

The aim of this note is to attract attention to the most important open problems and new
directions of research in this exciting and promising area.

1 Distance spaces

Recall that a metric space is a pair (∆, d), where ∆ is a nonempty set (of points) and d is a
function from ∆×∆ into the set R≥0 (of non-negative real numbers) satisfying the following
axioms

identity of indiscernibles: d(x, y) = 0 iff x = y, (1)
triangle inequality : d(x, z) ≤ d(x, y) + d(y, z), (2)
symmetry : d(x, y) = d(y, x) (3)

for all x, y, z ∈ ∆. The value d(x, y) is called the distance from the point x to the point
y. Given a metric space (∆, d), a point x ∈ ∆ and a nonempty Y ⊆ ∆, define the distance
d(x, Y ) from x to Y by taking

d(x, Y ) = inf{d(x, y) | y ∈ Y },

and put d(y, ∅) =∞. The distance d(X, Y ) between two nonempty sets X and Y is

d(X, Y ) = inf{d(x, y) | x ∈ X, y ∈ Y }.
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Although acceptable in many cases, the defined concept of metric space is not universally
applicable to all interesting measures of distance between points, especially those used in
everyday life. Consider, for instance, the following two examples:

(i) If d(x, y) is the flight-time from x to y then, as we know it too well, d is not necessarily
symmetric, even approximately (just take a plane from London to Tokyo and back).

(ii) Often we do not measure distances by means of real numbers but rather using more
fuzzy notions such as ‘short,’ ‘medium’ and ‘long.’ To represent these measures we can, of
course, take functions d from ∆ × ∆ into the subset {1, 2, 3} of R≥0 and define short := 1,
medium := 2, and long := 3. So we can still regard these distances as real numbers. However,
for measures of this type the triangle inequality (2) does not make sense (short plus short can
still be short, but it can also be medium or long).

Spaces (∆, d) satisfying only axiom (1) will be called distance spaces.
Recall also that a topological space is a pair (U, I) in which U is a nonempty set, the

universe of the space, and I is the interior operator on U satisfying the Kuratowski axioms:
for all X, Y ⊆ U ,

I(X ∩ Y ) = IX ∩ IY, IX ⊆ IIX, IX ⊆ X and IU = U.

The operator dual to I is called the closure operator and denoted by C: for every X ⊆ U , we
have CX = U − I(U −X). Thus, IX is the interior of a set X, while CX is its closure. X is
called open if X = IX and closed if X = CX.

Each metric space (∆, d) gives rise to the interior operator Id on ∆: for all X ⊆ ∆,

IdX = {x ∈ X | ∃ε > 0 ∀y (d(x, y) < ε→ y ∈ X)}.

The pair (∆, Id) is called the topological space induced by the metric space (∆, d). The dual
closure operator Cd in this space can be defined by the equality

CdX = {x ∈ W | ∀ε > 0 ∃y ∈ X d(x, y) < ε}.

Examples. We briefly remind the reader of a few standard examples of metric and topo-
logical spaces that will be used in what follows.

1 The one-dimensional Euclidean space is the set of real numbers R equipped with the
following metric on it

d1(x, y) = |x− y|.

Let X ⊆ R. A point x ∈ R is said to be interior in X if there is some ε > 0 such that the
whole open interval (x − ε, x + ε) belongs to X. The interior IX of X is defined then as
the set of all interior points in X. It is not hard to check that (R, I) is the topological space
induced by the Euclidean metric d1. Open sets in (R, I) are (possibly infinite) unions of open
intervals (a, b), where a ≤ b. The closure of (a, b), for a < b, is the closed interval [a, b], with
the end points a and b being its boundary.

2 In the same manner one can define n-dimensional Euclidean spaces based on the
universes Rn with the metric

dn(x, y) =

√√√√
n∑

i=1

(xi − yi)2
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(in the definition of interior points x one should take n-dimensional ε-neighbourhoods of x).
3 Further well-known examples are metric spaces on graphs: the distance between two

nodes of a graph is defined as the length of the shortest path between them. Special cases
are the tree metric spaces.

4 A topological space is called an Aleksandrov space [2] if arbitrary (not only finite)
intersections of open sets are open. Aleksandrov spaces are closely related to quasi-ordered
sets, that is, pairs G = (V, R), where V is a nonempty set and R a transitive and reflexive
relation on V . Every such quasi-order G induces the interior operator IG on V : for X ⊆ V ,

IGX = {x ∈ X | ∀y ∈ V (xRy → y ∈ X)}.

In other words, the open sets of the topological space TG = (V, IG) are the upward closed (or
R-closed) subsets of V . It is well-known (see, e.g., [6]) that TG is an Aleksandrov space and,
conversely, every Aleksandrov space is induced by a quasi-order.

2 Modal logics of distance spaces

The intended distance models we would like to talk about with the help of modal-like for-
malisms are structures of the form

I =
(
D, "I1, "

I
2, . . . , p

I
1, p

I
2, . . .

)
(4)

where D = (∆, d) is a distance space, the "Ii are some elements (or locations) of ∆ and the pI
i

are subsets of ∆. Distance models with the underlying distance space being a metric space
will be called metric models.

We divide our languages designed for talking about distance models into two groups:
those without quantification over distances and those that do use (explicitly or implicitly)
such quantification.

2.1 Logics without quantification over distances

We introduce the following ‘parameterised modalities’ or ‘bounded quantifiers:’

• ∃=a meaning ‘somewhere at distance a,’

• ∃<a meaning ‘somewhere at distance < a,’

• ∃>a meaning ‘somewhere at distance > a,’ and

• ∃<b
>a meaning ‘somewhere at distance d with a < d < b,’

where a and b are some numbers from R≥0 (or rather Q≥0 to avoid the problem of representing
real numbers and keep the language countable). Then one can also define duals like ∀<b

>a

meaning ‘everywhere within distance d for a < d < b,’ etc. (As the expressive completeness
result below shows, once we restrict ourselves to the ‘modal’ paradigm, our choice of operators
is rather natural.)
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More precisely, given a distance model I of the form (4), we interpret our operators as

(∃=aτ)I = {x ∈ ∆ | ∃y (d(x, y) = a ∧ y ∈ τI)},
(∃<aτ)I = {x ∈ ∆ | ∃y (d(x, y) < a ∧ y ∈ τI)},
(∃>aτ)I = {x ∈ ∆ | ∃y (d(x, y) > a ∧ y ∈ τI)},
(∃<b

>aτ)
I = {x ∈ ∆ | ∃y (a < d(x, y) < b ∧ y ∈ τI)},

where τI ⊆ ∆.

The full ‘modal’ language of distance spaces. The full language MS of distance spaces
with the operators ∃=a, ∃<a, ∃>a, ∃<b

>a (and their duals ∀=a, ∀<a, etc.) interpreted as defined
above was introduced and analysed in [14]. Formally, the expressions of this language are
defined as follows:

τ ::= pi | {"i} | ¬τ | τ1 - τ2 | ∃=aτ | ∃<aτ | ∃>aτ | ∃<b
>aτ, (5)

where a, b ∈ Q≥0 with a < b, and the "i are location constants (or nominals) interpreted by
singleton sets. As expressions of the form τ are interpreted as subsets of distance spaces, we
will call them (spatial) terms. Given some terms, we allow the language to say some simple
things about them by means of formulas that are defined as follows:

ϕ ::= τ1 . τ2 | d("1, "2) = a | d("1, "2) < a | ¬ϕ | ϕ1 ∧ ϕ2

(in particular, we can express "i ∈ τ and τ1 = τ2). Formulas are interpreted in distance
models as true or false in the natural way. Various logics in (fragments of) this language can
be obtained by restricting the class of distance spaces underlying our models, say, to the class
of metric spaces.

Below we summarise what is known about the language MS interpreted over various
classes of distance spaces. Perhaps the most important result is the following expressive
completeness theorem [14] which describes precisely how the modal language MS is related
to first-order logic over metric models:

Over the class metric models, the language MS is expressively complete for (or has
the same expressive power as) the two-variable fragment of first-order logic with
countably many unary predicates and binary predicates of the form d(x, y) < a
and d(x, y) = a for a ∈ Q≥0.

A rather transparent axiomatisation of formulas of MS that are valid in metric models has
been given in [12] using some ‘Gabbay-style’ rules known from hybrid logic. To give the reader
some idea of the axiomatisation, we observe first that ∃≤a and ∃>a behave like normal modal
‘diamonds,’ ∀≤aτ -∀>aτ is the universal modality !∀ , while ∃>0τ is the difference operator (so
in fact, nominals are expressible in MS). Typical ‘non-modal’ axioms look as follows:

τ . ∀≤a∃≤aτ,

∃≤a∀>bτ . ∀>a+bτ.

It is also shown in [12] that MS does not have the Craig interpolation property over metric
models.
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The satisfiability1 problem for MS over metric models was proved to be undecidable
in [14]. It turns out that the ‘doughnut’ operators ∃≤a

>0 and the propositional constants /
and ⊥ are already enough for obtaining undecidability: this relatively small fragment can
‘enforce’ the N × N grid using the ‘punctured’ centers of circles, and so we can encode in it
the undecidable N× N tiling problem.

An important class of distance models consists of those that are based on the one-
dimensional Euclidean space R. The situation here can be understood by embedding into
quantitative temporal logics: the full language MS without the operator ∃=a (but with op-
erators ∃≤a

≥b for a 1= b) turns out to be decidable over R. It is EXPSPACE-complete under the
binary coding and PSPACE-complete under the unary coding of parameters [11, 3]. Note,
however, that the fragment of MS with the operators ∃=a only is undecidable over R; see [3].

These undecidability results have motivated the study of ‘well-behaved’ fragments of MS
over various classes of models. In particular, two such ‘reasonable’ fragments have been
discovered.

The (∃≤a, ∃>a)-fragment. The terms of this fragment are formed as follows:

τ ::= pi | {"i} | ¬τ | τ1 - τ2 | ∃≤aτ | ∃>aτ.

This fragment (together with several others without the doughnut operators) turns out to be
decidable over various classes of distance models (over metric models, in particular), and even
has the finite model property with respect to intended models (e.g., a term is satisfiable in a
metric model iff it is satisfiable in a finite metric model) [14]. The computational complexity
of these satisfiability problems was proved to be in non-deterministic exponential time in [14].
Using a different, carefully crafted ‘Fisher–Ladner closure,’ one can actually prove EXPTIME-
completeness of these problems, provided that the numerical parameters are coded in unary
[26].

Problem 1. What is the complexity of the satisfiability problem for the (∃≤a, ∃>a)-fragment
over metric models under the binary coding of parameters?

Note that the (∃≤a, ∃>a)-fragment is undecidable over models based on Euclidean spaces
Rn, for n ≥ 2 [14, 25].

Hilbert-style axiomatisations for the (∃≤a, ∃>a)-fragment over arbitrary distance models
(and several subclasses) are provided in [13]. Observe that the universal modality and the
difference operator (and so nominals) are still expressible in this fragment.

The (∃≤a, ∃<a)-fragment. The terms of this fragment are formed as follows:

τ ::= pi | {"i} | ¬τ | τ1 - τ2 | ∃≤aτ | ∃<aτ

(observe that the universal modality and nominals are no longer expressible, and so the {"i}
are not just syntactic sugar). In many contexts—e.g., if we represent a similarity measure
between objects of a certain domain by means of a metric—we may not need operators of the
form ∃>a. The (∃≤a, ∃<a)-fragment extended with the universal and existential modalities !∀

and "∃ was considered in [24]. The satisfiability problem for this language over metric models
is EXPTIME-complete even if the numerical parameters are coded in binary, and enjoys the

1Throughout, it does not matter whether we consider term or formula satisfiability.
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finite model property in the same sense as above. The crucial observation in the proof of this
result is that the logic turns out to be complete with respect to tree metric spaces, a feature
not shared by the richer languages considered above. An intriguing fact is that the fragments
with only strict operators ∃<a and only non-strict ones ∃≤a behave similarly, which perhaps
reflects our everyday life disregard of the borders. Note that using both these operators we
can say that the distance between two sets p and q is precisely a:

(p - ∃≤aq 1= ⊥) ∧ (p - ∃<aq = ⊥)

The (∃≤a, ∃<a)-fragment is PSPACE-complete over models based on R under binary cod-
ing of parameters; see [15]. However, for n ≥ 2, the (∃≤a, ∃<a)-fragment becomes undecidable
over Rn, even without nominals [14, 25]. Thus, no interesting decidable fragment of MS over
R2 is known so far. Interesting candidates which might be decidable are given in the next
open problem:

Problem 2. Is the language with operators ∃<a only decidable over R2? What about the
fragment with operators ∃≤a?

Besides the full R2, natural and useful spaces to consider are bounded subspaces like
[0, 1] × [0, 1]. It is to be noted that the undecidability proofs mentioned above do not go
through in this case.

Problem 3. Investigate the satisfiability problem for fragments of MS over bounded sub-
spaces of Rn (such as [0, 1]× [0, 1]).

Of course, the choice of the two fragments of MS discussed above is rather ad hoc. There
are many open questions along these lines:

Problem 4. Give a complete classification of the fragments of MS over various classes of
distance models with respect to their satisfiability and axiomatisation problems. Given a class
C of distance models, are there natural ‘maximal’ decidable fragments of MS over C? If so,
what is their computational complexity (under unary and binary coding of parameters)?

We conjecture that a natural candidate for a ‘maximal’ decidable fragment of MS over
various classes is the language with the operators ∃≤a, ∃<a, ∃>a, and ∃≥a.

2.2 Logics with quantification over distances

The language MS does not allow any quantification over distances. In particular, we can
neither reason about the topology induced by a metric space nor compare distances without
fixing their absolute values. A natural extension QMS of MS with quantification over
distances can be obtained by allowing individual variables x, y, z, . . . over R>0 or Q>0 in
distance operators as well as quantification over these variables. Formally, the QMS-terms
are defined by adding to (5) terms of the form ∃x τ and by allowing variables x, y, z, . . . along
with concrete parameters in the distance operators, for example,

∃=xτ, ∃<xτ, ∃>xτ, ∃<x
>yτ, ∃<x

>0τ.
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To interpret QMS-terms in distance models of the form (4), we also need assignments a of
positive real numbers a(x) ∈ R>0 to the individual variables x.2 Then we have

(∃=xτ)I,a = (∃=a(x)τ)I

(∃<xτ)I,a = (∃<a(x)τ)I

(∃>xτ)I,a = (∃>a(x)τ)I

(∃<x
>yτ)

I,a = (∃<a(x)
>a(y)τ)

I

(∃x τ)I,a =
⋃

{τI,b | b(y) = a(y), for y 1= x} .

Not much is known about the expressive power of this language. We conjecture, in particular,
that the following problem can be solved in a positive way:

Problem 5. Is the language QMS expressively complete for the two-sorted first-order logic
where one sort is over R>0 and the other over the metric space underlying a given metric
model, with only two variables of the second sort being allowed?

However, we do have a number of interesting results for some fragments of QMS.

‘Modal’ languages of metric and topological spaces. The terms of the fragment MT
of QMS can be formed as follows:

τ ::= pi | ¬τ | τ1 - τ2 | ∃<aτ | ∃≤aτ | ∃x∀<xτ | ∀x∃<xτ | ∀x∀<xτ | ∃x∃<xτ,

where a ∈ Q≥0. (Observe the similarities between these ‘directly closed’ terms and expressions
of Computational Tree Logic CT L.) It is not hard to see that by adding similar ‘non-strict’
operators like ∀x∃≤x and ∃x∀≤x we do not increase the expressive power of the language. So
in fact, what we obtain this way is an extension of the nominal-free (∃≤a, ∃<a)-fragment of
MS above with the topological interior and closure operators

Iτ = ∃x∀<xτ, Cτ = ∀x∃<xτ, (6)

and the universal and existential modalities

!∀ τ = ∀x∀<xτ, "∃ τ = ∃x∃<xτ,

The intended meanings of these terms of course only ‘work’ in metric models:

(∃x∀<xp)I =
⋃

a∈R>0

(∀<ap)I, (∀x∃<xp)I =
⋂

a∈R>0

(∃<ap)I,

(!∀ τ)I =
{
∆, if τI = ∆,
∅, otherwise, ("∃ τ)I =

{
∆, if τI 1= ∅,
∅, otherwise.

The language MT over metric models can be also regarded as an extension of the modal
logic S4u of topological spaces with the metric operators ∃<a and ∃≤a. Such a view was taken
in [25] where this logic was first introduced and investigated.

2We quantify over positive real numbers rather than non-negative ones in order to obtain short and trans-
parent definitions of standard topological operators; see (6). The expressivity of the language does not depend
on this assumption.
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Note first that this logic does not have the finite model property with respect to metric
models because the topology induced by a finite metric space is trivial. For example, the
term p-C¬p is not satisfiable in any finite metric model, yet is satisfiable in every Euclidean
space. Moreover, the logic in question is not compact in the sense that there is an infinite
set Γ of terms such that, for every finite Γ′ ⊆ Γ, there exists a model I with

⋂
τ∈Γ′ τI 1= ∅,

but there exists no model I for which
⋂

τ∈Γ τ
I 1= ∅. An example is given by the set of terms

{¬Cp} ∪ {∃< 1
n p | n ∈ N+}.

It turns out, however, that the intended metric models for this logic can be represented
in the form of relational structures à la Kripke frames, which can be regarded as partial
descriptions of scenarios that can be realised in metric models. This representation theorem—
in fact, a generalisation of the McKinsey–Tarski [17] representation theorem for topological
spaces—reduces reasoning with almost always infinite metric models to reasoning with finite
relational models, which can be shown to be EXPTIME-complete even for the binary coding
of the numerical parameters.

The formulas of MT that are valid in metric models can be axiomatised in a natural way
(bearing in mind that both distance and topological operators are in fact normal modalities):
we have the S4-axioms for I and C, standard axioms for ∀<a and ∃<a reflecting, in particular,
the triangle inequality

τ . ∀<a∃<aτ,

∃≤a∃≤bτ . ∃≤a+bτ,

etc.

and only two axioms connecting metric and topology

Cτ . ∃<aτ,

∃<aCτ . ∃<aτ,

see [25] for more details.

Problem 6. Investigate axiomatisation and satisfiability problems for MT over metric spaces
whose induced topological spaces are connected.

We conjecture that this logic can be axiomatised by adding the connectivity axiom

"∃ Ip -"∃ Iq -!∀ (Ip 4 Iq) . "∃ (Ip - Iq)

to the axioms over arbitrary metric models, and that results on the satisfiability problem are
similar to those for the arbitrary metric case.

Problem 7. Investigate axiomatisation and satisfiability problems for MT over other inter-
esting classes of metric and topological metric spaces.

Problem 8. What happens if we extend S4u with the operators ∃≤a and ∃>a?

Problem 9. What happens if we extend MT with nominals?

The satisfiability problem for MT over the Euclidean space R is decidable; see [11]. It
becomes undecidable over models based on R2 (or over its various subspaces), as it contains
the undecidable (∃≤a, ∃<a)-fragment of MS, see above. However, the following questions are
open:
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Problem 10. Is there a transparent axiomatisation of MT over R? What is the computa-
tional complexity of the satisfiability problem?

Problem 11. Is the satisfiability problem for MT over R2 (or its subspaces) recursively
enumerable? What happens if we omit the operators ∃≤a?

The language of comparative similarity. We can be a bit more ‘liberal’ regarding the
quantifier patterns of MT and (similarly to Computational Tree Logic CT L+) only require
that the operators ∃<x and ∃≤x cannot occur nested without an ∃x in between. We then end
up with the similarity language SL containing the ‘closer operator ’

τ1 ⇔ τ2 = ∃x (∃≤xτ1 - ¬∃≤xτ2).

Its semantical meaning in distance models of the form (4) is defined as follows:

(τ1 ⇔ τ2)I = {x ∈ ∆ | d(x, τI
1 ) < d(x, τI

2 )} . (7)

In other words, τ1 ⇔ τ2 is (interpreted by) the set containing those objects of ∆ that are
‘closer’ (or ‘more similar’) to τ1 than to τ2.

This allows us to represent and reason about predicates like ‘X is closer to Y than it is
to Z’ which are quite common in our everyday life (‘the body was in the middle of the room,
rather closer to the door than to the window’).

The closer operator itself turns out to be quite powerful. Using it we can express (in
metric spaces) the interior (and so the closure) operator by taking

Iτ = /⇔ ¬τ.

Indeed, by the definition above, we have

(Iτ)I = {x ∈ ∆ | d(x,∆− τI) > 0}.

We can also express the existential (and so the universal) modality:

"∃ τ = τ ⇔ ⊥

because d(x, ∅) = ∞. Thus, the similarity language having the sole closer operator interpreted
in metric models results in a logic that contains full S4u, and can again be regarded as a
qualitative spatial formalism for reasoning about metric spaces with their induced topologies.
We call it the language of comparative similarity and denote by CSL.

One more interesting operator is

τ1 " τ2 = ¬(τ1 ⇔ τ2) - ¬(τ2 ⇔ τ1)

which defines the set of points located at the same distance from τ1 and τ2.
As a small illustrating example consider the formula

p . (q ⇔ r) ∧ q . (r ⇔ p) ∧ r . (p ⇔ q) ∧ p 1= ⊥. (8)

One can readily check that it is satisfiable in a three-point non-symmetrical ‘graph model,’
say, in the one depicted below where the distance from x to y is the length of the shortest
directed path from x to y.

• •
•

!""""""#$$$$$$%
p q

r
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On the other hand, it can be satisfied in the following subspace of R

. . . • • • • • • . . .
q r p q r p

(
4
3

)2 4
3 1 3

4

(
3
4

)2

The price we have to pay for the expressivity of the closer operator is that the satisfiability
problem for CSL over natural classes of metric spaces becomes EXPTIME-hard (remember
that S4u is PSPACE-complete).

Special classes of distance spaces are the so-called min-spaces that satisfy the min-condition

d(X, Y ) = inf{d(x, y) | x ∈ X, y ∈ Y } = min{d(x, y) | x ∈ X, y ∈ Y },

for all sets X and Y . Over min-spaces, CSL is actually EXPTIME-complete (even if we
extend it with distance operators ∃<a and ∃≤a, code the numerical parameters in binary, and
allow nominals as well) [20]. Actually, the complexity remains the same no matter whether we
assume symmetry (3) and the triangle inequality (2). Note that the term (8) is not satisfiable
in any symmetric model satisfying the min-condition.

Rather unexpectedly, valid formulas of CSL are not even recursively enumerable when
interpreted over finite subspaces (or arbitrary min-subspaces) of R or in R itself [19, 20]. This
can be proved by a reduction of Hilbert’s 10th problem on the unsolvability of Diophantine
equations; see, e.g., [4] and references therein. The same holds for min-subspaces of Rn,
where n ≥ 2. To give the reader some impression of what structures can be enforced on such
subspaces of R2 by terms with the closer operator, consider the following formula

(p0 1= ⊥) ∧ (p1 1= ⊥) ∧
∧

i,j<7
j %=i,i⊕1

(
pi . (pj " pi⊕1)

)
,

where ⊕ is addition modulo 7. One can show that to satisfy this formula, a subspace of R2

must contain an infinite grid of the form !!!

!!!

! ! ! ! ! !
" "

" " "
" " " "

" " "

However, finding axiomatisations for CSL over other classes of models is open:

Problem 12. Axiomatise the formulas of CSL that are valid in various classes of models.

As concerns evaluating formulas of CSL in arbitrary (not necessarily min) metric spaces,
we only know that satisfiability is decidable (and EXPTIME-hard).

Problem 13. What is the computational complexity of the satisfiability problem for CSL over
arbitrary metric models? What happens if we extend the language with nominals?

Problem 14. Gärdenfors [10] suggests that atomic terms of similarity languages should be
interpreted by convex subsets of Rn. Investigate the computational behaviour of CSL and its
extensions under such or similar ‘valuation restrictions.’
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Problem 15. Characterise (un)decidable fragments of full QMS over various classes of
models.

Our similarity languages are ‘crisp’ in the sense that they operate with precise distances
like ‘the distance between two proteins is 3.1415926 . . . ’ In practice such distances are only
computed approximately. An interesting and important problem is the following:

Problem 16. Develop logical formalisms capable of dealing with non-crisp distances, e.g.,
using vagueness/fuzziness/probability.
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[2] P. S. Alexandroff. Diskrete Räume. Matematicheskii Sbornik, 2 (44):501–518, 1937.

[3] R. Alur, T. Feder, and T. Henzinger. The benefits of relaxing punctuality. Journal of
the ACM, 43:116–146, 1996.

[4] J. Barwise, editor. Handbook of Mathematical Logic. North-Holland, Amsterdam, 1977.

[5] B. Bennett. Spatial reasoning with propositional logic. In Proceedings of the 4th Inter-
national Conference on Knowledge Representation and Reasoning, pages 51–62. Morgan
Kaufmann, 1994.

[6] N. Bourbaki. General topology, Part 1. Hermann, Paris and Addison-Wesley, 1966.

[7] M. Egenhofer and R. Franzosa. Point-set topological spatial relations. International
Journal of Geographical Information Systems, 5:161–174, 1991.

[8] M. Egenhofer and J. Herring. Categorizing topological relationships between regions,
lines and point in geographic databases. Technical report, University of Maine, 1991.

[9] D. Gabelaia, R. Kontchakov, A. Kurucz, F. Wolter, and M. Zakharyaschev. Combining
spatial and temporal logics: expressiveness vs. complexity. Journal of Artificial Intelli-
gence Research (JAIR), 23:167–243, 2005.

[10] P. Gärdenfors. Conceptual Spaces. The Geometry of Thought. The MIT Press, 2000.

[11] Y. Hirshfeld and A. Rabinovich. Logics for real time: decidability and complexity.
Fundamenta Informaticae, 62:1–28, 2004.

[12] O. Kutz. Notes on logics of metric spaces. Studia Logica, 2005. (In print).

[13] O. Kutz, H. Sturm, N.-Y. Suzuki, F. Wolter, and M. Zakharyaschev. Axiomatizing
distance logics. Journal of Applied Non-Classical Logic, 12:425–440, 2002.

11



[14] O. Kutz, H. Sturm, N.-Y. Suzuki, F. Wolter, and M. Zakharyaschev. Logics of metric
spaces. ACM Transactions on Computational Logic, 4:260–294, 2003.

[15] C. Lutz, D. Walther, and F. Wolter. Quantitative temporal logics: PSpace and below.
In Proceedings of the Twelfth International Symposium on Temporal Representation and
Reasoning, Burlington, VT, USA, 2005. IEEE Computer Society Press.

[16] J.C.C. McKinsey. A solution of the decision problem for the Lewis systems S2 and S4,
with an application to topology. Journal of Symbolic Logic, 6:117–134, 1941.

[17] J.C.C. McKinsey and A. Tarski. The algebra of topology. Annals of Mathematics,
45:141–191, 1944.

[18] W. Nutt. On the translation of qualitative spatial reasoning problems into modal logics.
In W. Burgard, T. Christaller, and A. Cremers, editors, Advances in Artificial Intel-
ligence. Proceedings of the 23rd Annual German Conference on Artificial Intelligence
(KI’99), volume 1701 of Lecture Notes in Computer Science, pages 113–124. Springer,
1999.

[19] M. Sheremet, D. Tishkovsky, F. Wolter, and M. Zakharyaschev. ‘Closer’ representation
and reasoning. In I. Horrocks, U. Sattler, and F. Wolter, editors, International Workshop
on Description Logics, (DL 2005), pages 25–36, 1999.

[20] M. Sheremet, D. Tishkovsky, F. Wolter, and M. Zakharyaschev. Comparative
similarity, tree automata, and Diophantine equations. Submitted; available at
http://www.dcs.kcl.ac.uk/staff/mz/, 2005.

[21] H. Sturm, N.-Y. Suzuki, F. Wolter, and M. Zakharyaschev. Semi-qualitative reasoning
about distances: A preliminary report. In M. Ojeda-Aciego, I.P. de Guzmán, G. Brewka,
and L. Moniz Pereira, editors, JELIA, volume 1919 of Lecture Notes in Computer Science,
pages 37–56. Springer, 2000.

[22] A. Tarski. Der Aussagenkalkül und die Topologie. Fundamenta Mathematicae, 31:103–
134, 1938.

[23] T. Tsao Chen. Algebraic postulates and a geometric interpretation of the Lewis calculus
of strict implication. Bulletin of the AMS, 44:737–744, 1938.

[24] F. Wolter and M. Zakharyaschev. Reasoning about distances. In Proceedings of the 18th
International Joint Conference on Artificial Intelligence (IJCAI 2003), pages 1275–1280.
Morgan Kaufmann, 2003.

[25] F. Wolter and M. Zakharyaschev. A logic for metric and topology. Journal of Symbolic
Logic, 70:795–828, 2005.

[26] F. Wolter and M. Zakharyaschev. On the computational complexity of metric logics.
Manuscript, 2005.

12


