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Abstract

We show the first examples of recursively enumerable (even decidable) two-dimensional
products of finitely axiomatisable modal logics that are not finitely axiomatisable. In
particular, we show that any axiomatisation of some bimodal logics that are determined
by classes of product frames with linearly ordered first components must be infinite in
two senses: It should contain infinitely many propositional variables, and formulas of
arbitrarily large modal nesting-depth.

1 Introduction

Products of Kripke frames are natural relational structures allowing us to model interaction
between different modal operators, representing time, space, knowledge, actions, etc. The
product construction shows up in various disguises, and is related to many other logical for-
malisms, such as algebras of relations in algebraic logic, finite variable fragments of classical,
intuitionistic and modal predicate logics, temporal-epistemic logics, dynamic topological log-
ics, modal and temporal description logic, see e.g. [1, 2, 3, 6, 7, 8, 9, 18, 19]. Ever since
their introduction [21, 22, 10], products of modal logics —propositional multimodal logics
determined by classes of product frames— have been extentensively studied, see [9, 16] for
comprehensive expositions and further references.

In this paper we consider the problem of finding finite axiomatisations for products of two
finitely axiomatisable modal logics. Let us first summarise the known results related to this
problem:

(1) If both unimodal logics L0 and L1 are such that their classes of Kripke frames are
definable by recursive sets of first-order sentences, then their product L0×L1 is a recursively
enumerable bimodal logic [10].

(2) If both L0 and L1 are finitely axiomatisable by modal formulas having universal Horn
first-order correspondents, then L0 × L1 is finitely axiomatisable [10]. In fact, these product
logics are product-matching : One only needs to take the formulas axiomatising L0 and L1,
and add the following two bimodal (Sahlqvist) formulas:

2120p↔ 2021p, 3021p→ 2130p.

1



(These formulas are valid in all product frames, and express that the modal operators of L0

and L1 commute and have the Church–Rosser property (confluence).) For example, if each
Li is either K (the logic of all frames), or K4 (the logic of all transitive frames), or S4 (the
logic of all reflexive and transitive frames), or S5 (the logic of all equivalence frames), then
L0 × L1 is product-matching.

(3) The result in (2) cannot be generalised to products of logics axiomatised by formulas
having universal (but not necessarily Horn) first-order components. Such an example is the
finitely axiomatisable modal logic K4.3, determined by frames (W,R), where R is transitive
and weakly connected :

∀x, y, z ∈W
(
xRy ∧ xRz → (y = z ∨ yRz ∨ zRy)

)
.

(A rooted transitive and weakly connected relation is a linearly ordered sequence of clusters.)
As is shown in [9, Thm.5.15], no product logic of the form K4.3 × L is product-matching,
whenever L is any Kripke complete modal logic containing K4 and having the two-element
reflexive chain among its frames. So, say, K4.3×K4 is an example of a recursively enumerable
but not product-matching product of two finitely axiomatisable logics. However, it was left
open whether any of these product logics were finitely axiomatisable.

(4) Finally, note that the product construction may result in quite complex bimodal logics.
There are several examples of non-recursively enumerable, even Π1

1-complete, products of
finitely axiomatisable logics [11, 20, 23].

In this paper we show the first examples of recursively enumerable (even decidable) two-
dimensional products of finitely axiomatisable modal logics that are not finitely axiomatisable.
In particular, we show that any axiomatisation of some bimodal logics that are determined
by classes of product frames with linearly ordered first components (such as, e.g., K4.3×K)
must be infinite in two senses: It should contain infinitely many propositional variables, and
formulas of arbitrarily large modal nesting-depth. Precise formulations are given in Section 3.
These results give negative answers to questions in [10], and to Questions 5.18 and 5.19 in [9].

The structure of the paper is as follows. Section 2 provides the relevant definitions and
notation. The main results are listed in Section 3, and proved in Sections 4 and 5. Finally,
in Section 6 we discuss the obtained results and formulate some open problems.

2 Products of modal logics

In what follows we assume that the reader is familiar with the basics of possible world se-
mantics for modal logics (see, e.g., [4, 5]). Let us here begin with summarising the necessary
notions and notation for the bimodal case. Similarly to (propositional) unimodal formulas,
by a bimodal formula we mean any formula built up from propositional variables using the
Booleans and the unary modal operators 20, 21, and 30, 31. Bimodal formulas are evaluated
in 2-frames: relational structures of the form F = (W,R0, R1), having two binary relations R0

and R1 on a non-empty set W . A Kripke model based on F is a pair M = (F, ϑ), where ϑ is
a function mapping propositional variables to subsets of W . The truth relation ‘M, w |= ϕ’,
connecting points in models and formulas, is defined as usual by induction on ϕ. Given a set
Σ of bimodal formulas, we write M |= Σ if we have M, w |= ϕ, for every ϕ ∈ Σ and every
w ∈ W . (We write just M |= ϕ for M |= {ϕ}.) We say that ϕ is valid in F, if M |= ϕ for
every model M based on F. If every formula in a set Σ is valid in F, then we say that F is a
frame for Σ.
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A set L of bimodal formulas is called a (normal) bimodal logic (or logic, for short) if it
contains all propositional tautologies and the formulas 2i(p → q) → (2ip → 2iq), for i < 2,
and is closed under the rules of Substitution, Modus Ponens and Necessitation ϕ/2iϕ, for
i < 2. Given a class C of 2-frames, we always obtain a logic by taking

Log C = {ϕ : ϕ is a bimodal formula valid in every member of C}.

We say that Log C is determined by C, and call such a logic Kripke complete. Given a bimodal
logic L and a set Σ of bimodal formulas, we say that Σ axiomatises L if L is the smallest
bimodal logic containing Σ.

The usual operations on unimodal frames can be defined on 2-frames as well. In particular,
given two 2-frames F = (F,RF

0 , R
F
1 ) and G = (G,RG

0 , R
G
1 ), a function f : F → G is called a

p-morphism from F to G if it satisfies the following conditions, for all u, v ∈ F , y ∈ G, i < 2:

• uRF
i v implies f(u)RG

i f(v) (that is, f is a homomorphism),

• f(u)RG
i y implies that there is some v ∈ F such that f(v) = y and uRF

i v (the backward
condition).

If f is onto then we say that G is a p-morphic image of F. F is a subframe of G if F ⊆ G
and RF

i = RG
i ∩ (F ×F ), for i < 2. F is a generated subframe of G, if it is a subframe and we

have v ∈ F , whenever uRG
i v for some u ∈ F , v ∈ G, i < 2. In particular, given some x ∈ G,

the subframe Gx of G generated by point x is the subframe of G with the following set Gx of
points:

Gx = {x} ∪ {y ∈ G : y is accessible from x along the transitive closure of RG
0 ∪RG

1 }.

A 2-frame G is called rooted if G = Gr for some point r. Similarly to the unimodal case,
validity of bimodal formulas in 2-frames is preserved under taking p-morphic images and
generated subframes.

Next, let us introduce some special, ‘two-dimensional’, 2-frames. Given unimodal Kripke
frames F0 = (W0, R0) and F1 = (W1, R1), their product is defined to be the 2-frame

F0 × F1 = (W0 ×W1, R0, R1),

where W0 ×W1 is the Cartesian product of W0 and W1 and, for all u, u′ ∈W0, v, v′ ∈W1,

(u, v)R0(u′, v′) iff uR0u
′ and v = v′,

(u, v)R1(u′, v′) iff vR1v
′ and u = u′.

2-frames of this form will be called product frames throughout. Now, for i < 2, let Li be a
Kripke complete unimodal logic in the language with 2i and 3i. The product of L0 and L1

is defined as the (Kripke complete) bimodal logic

L0 × L1 = Log {F0 × F1 : Fi is a frame for Li, for i < 2}.

Note that product logics always have ‘non-standard’ frames, that is, 2-frames that are not
isomorphic to product frames.
Notation. In this paper we are interested in product logics with a ‘linear’ first component,
that is, where frames for L0 are frames for K4.3. To emphasise this fact, the transitive and
weakly connected relations in the 2-frames we will be dealing with will always be denoted by
≤a, for some subscript a. This will not necessarily mean that ≤a is reflexive. However, we
will use the following notation:

u <a v iff u ≤a v and v 6≤a u.

3



3 Main results

Throughout, an irreflexive ω-fan is a unimodal Kripke frame isomorphic to Hω = (ω + 1, R),
where R = {(ω, i) : i < ω}. Similarly, a reflexive ω-fan is any frame isomorphic to H+

ω =
(ω + 1, R+), where R+ = R ∪ {(i, i) : i ≤ ω}.

Theorem 1. Let L be any bimodal logic such that

• L contains K4.3×K, and

• the product of (ω,≤) and an (irreflexive or reflexive) ω-fan is a frame for L.

Then L is not axiomatisable using finitely many propositional variables.

Well-known examples of unimodal logics having an ω-fan among their frames are K,
K4, S4, Gödel–Löb logic GL (the logic of irreflexive and transitive frames without infinite
ascending chains), and Grzegorczyk logic Grz (the logic of reflexive and transitive frames
without infinite ascending chains of distinct points). So we have the following:

Corollary 1.1. Let L0 be any of the logics K4.3, S4.3, Log{(ω,≤)}, and L1 be any of
the logics K, K4, S4, GL, Grz. Then L0 × L1 is not axiomatisable using finitely many
propositional variables.

Note that both K4.3 ×K and K4.3 ×K4 are known to be recursively enumerable [10],
K4.3×K is even decidable [9, 24]. (The same hold for reflexive versions.)

Our next result shows that some of these possible axiomatisations should also have a
different kind of infinity. We define the vertical depth vd(ϕ) of a bimodal formula ϕ inductively
by taking

vd(p) = 0,
vd(ψ1 ∧ ψ2) = max(vd(ψ1), vd(ψ2)),
vd(¬ψ) = vd(ψ),
vd(30ψ) = vd(ψ),
vd(31ψ) = vd(ψ) + 1.

Theorem 2. Let L be a bimodal logic such that

K4.3×K ⊆ L ⊆ Log{(ω,≤)} ×K.

Then every axiomatisation of L must contain formulas of arbitrarily large vertical depth.

4 Infinitely many propositional variables are needed

In this section we prove Theorem 1. So let L be any bimodal logic containing K4.3 × K
such that the product of (ω,≤) and an ω-fan is a frame for L. In order to show that L is
not axiomatisable using finitely many propositional variables, we plan to proceed as follows.
Given m < ω, we call a Kripke model M = (F, ϑ) m-generated if there are at most m different
propositional variables p such that ϑ(p) 6= ∅. For every 0 < k < ω, we will define a 2-frame
Fk such that:

4



(a) Fk is not a frame for K4.3×K.

(b) If k > 24m + 1 then M |= L, for every m-generated model M based on Fk.

This will prove Theorem 1 because of the following. Suppose that Σ axiomatises L and Σ
contains m propositional variables, for some m < ω. Let k > 24m + 1 and take a 2-frame Fk

satisfying (b). Let M be an arbitrary model based on Fk. Let Mm be another model over Fk

that is the same as M on propositional variables occurring in Σ, and ∅ otherwise. Then Mm

is clearly m-generated and Mm |= Σ iff M |= Σ. So by (b), we have Mm |= L. As Σ ⊆ L, we
obtain Mm |= Σ, and so M |= Σ. This holds for any model M over Fk, so Fk is a frame for
Σ. Therefore, Log{Fk} is a bimodal logic containing Σ, and so we have that Fk is a frame for
L. As K4.3×K ⊆ L, this implies that Fk is a frame for K4.3×K, contradicting (a).

We fix some 0 < k < ω, and begin with the definition of Fk = (W,≤h, Rv), for the case
when (ω,≤)× Hω is a frame for L:

W = {y} ∪ {xi, ui, vi, wi, zi : i < k},

≤h is the reflexive and transitive closure of
{(ui, vi), (vi, wi), (wi, zi) : i < k} ∪ {(xi, xj), (xi, y), (y, xi) : i, j < k},

Rv = {(xi, uj), (xi, zj) : i, j < k} ∪ {(xi, vj) : i, j < k, i 6= j} ∪
{(y, ui), (y, wi), (y, zi) : i < k},

see Fig. 1. Note that in Fig. 1 (as well as in further figures) the reflexive, transitive and weakly
connected ≤h is depicted by ‘horizontal’ arrows and its clusters by ‘horizontal’ ellipses, and
Rv by kind of ‘vertical’ arrows.
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Figure 1: The frame Fk.

If L is such that (ω,≤)×Hω is not a frame for L, but (ω,≤)×H+
ω is, then we should add

the pairs {(w,w) : w ∈W} to Rv. From now on, we discuss in detail the vertically irreflexive
case only. The very similar proof of the reflexive case is left to the reader.

First, we prove (a). Let us begin with showing a general property of p-morphic images of
weakly connected frames.

Claim 3. Let f be a p-morphism from some weakly connected frame G0 = (W0,≤0) onto a
frame G1 = (W1,≤1). For all a, b ∈ W0, x ∈ W1, if a ≤0 b and f(a) ≤1 x <1 f(b) then there
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exists c ∈W0 such that a ≤0 c <0 b and f(c) = x. Moreover, if f(a) <1 x <1 f(b) then c can
be chosen such that a <0 c <0 b.

Proof. Take some a, b ∈ W0, x ∈ W1 such that a ≤0 b and f(a) ≤1 x <1 f(b). By the
backward condition on f , there exists c ∈ W0 such that a ≤0 c and f(c) = x. Moreover, as
f is a homomorphism, if f(a) <1 x then a <0 c. As ≤0 is weakly connected, we have either
c = b, or b ≤0 c, or c ≤0 b. But f(c) <1 f(b), so the first two cases cannot hold. Therefore,
c <0 b follows.

As being transitive and weakly connected is first-order definable, the class of all frames
for K4.3 is closed under ultraproducts. As K4.3 is a modal logic, its class of frames is also
closed under point-generated subframes. So, by [17, Thm.2.10], we obtain:

Claim 4. For every finite rooted 2-frame F, F is a frame for K4.3×K iff F is a p-morphic
image of a product frame for K4.3×K.

Therefore, in order to prove (a) it is enough to show the following:

Lemma 5. Fk is not a p-morphic image of a product frame for K4.3×K.

Proof. Suppose that there is a p-morphism f from a product frame H = (U,≤0, R1) with
transitive and weakly connected ≤0 onto Fk = (W,≤h, Rv). Take some i0 < k. As xi0 ≤h

yRvwi0 , there are a0, b, c0 ∈ U such that a0 ≤0 bR1c0, f(a0) = xi0 , f(b) = y, and f(c0) = wi0 .
As H is a product frame, there exists d0 ∈ U such that a0R1d0 ≤0 c0. As f is a p-morphism,
we must have that f(d0) = ui0 . As ui0 <h vi0 <h wi0 , by Claim 3, there exists e10 ∈ U such
that d0 <0 e

1
0 <0 c0 and f(e10) = vi0 . As H is a product frame, there exists a1 ∈ U such that

a1R1e
1
0. As f is a p-morphism, we must have that f(a1) = xi1 , for some i1 < k, i1 6= i0.

Next, as yRvwi1 , there exists c1 ∈ U such that bR1c1 and f(c1) = wi1 . As H is a product
frame, there exists d1 ∈ U such that a1R1d1 ≤0 c1. As f is a p-morphism, we must have that
f(d1) = ui1 . As ui1 <h vi1 <h wi1 , by Claim 3, there exists e21 ∈ U such that d1 <0 e

2
1 <0 c1

and f(e21) = vi1 . As H is a product frame, there exist e20, a2 ∈ U such that e10 <0 e
2
0 <0 c0,

a2R1e
2
0, and a2R1e

2
1. As f is a p-morphism, we must have the following:

vi0 ≤h f(e20) ≤h wi0 , (1)

f(a2)Rvf(e20), (2)
f(a2)Rvvi1 . (3)

These imply that f(e20) = vi0 and f(a2) = xi2 , for some i2 < k, i2 /∈ {i0, i1}. Indeed, by (3),
we have that

f(a2) = xi2 , for some i2 < k, i2 6= i1. (4)

By (1), either f(e20) = vi0 or f(e20) = wi0 . Now, by (2) and (4), f(e20) = vi0 follows, and so
i2 6= i0 must also hold (see Fig. 2).

And so on, using that yRvwij for all j < k − 1, after k − 1 steps we end up having
ak−1, e

k−1
0 , . . . , ek−1

k−2 ∈ U and pairwise distinct i0, . . . , ik−1 < k such that f(ak−1) = xik−1
,

ak−1R1e
k−1
j , and f(ek−1

j ) = vij , for all j < k − 1. Now, as yRvwik−1
, there exists ck−1 ∈ U

such that bR1ck−1 and f(ck−1) = wik−1
. As H is a product frame, there exists dk−1 ∈ U such

that ak−1R1dk−1 ≤0 ck−1. As f is a p-morphism, we must have that f(dk−1) = uik−1
. As

uik−1
<h vik−1

<h wik−1
, by Claim 3, there exists ek−1 ∈ U such that dk−1 <0 ek−1 <0 ck−1,
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Figure 2: Building a p-morphism from a product frame to Fk: the first steps.

and f(ek−1) = vik−1
. As H is a product frame, there exist e0, . . . , ek−2, ak ∈ U such that

ek−1
j <0 ej <0 cj for all j < k − 1, and akR1ej for all j < k. As f is a p-morphism, we must

have the following:

vij ≤h f(ej) ≤h wij , for all j < k − 1, (5)
f(ak)Rvf(ej), for all j < k − 1, (6)
f(ak)Rvvik−1

. (7)

By (7), we have that
f(ak) = x`, for some ` < k, ` 6= ik−1. (8)

By (5), for each j < k− 1, either f(ej) = vij or f(ej) = wij . Now, by (6) and (8), f(ej) = vij

follows, for every j < k − 1. Therefore, the index ` < k in (8) must also be different from
each of i0, . . . , ik−2. But there is no such `, a contradiction (see Fig. 3).

u e e e e u
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ppp ppp ppp

- - - -p p p - -

- - -p p p - -
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Figure 3: Building a p-morphism from a product frame to Fk: the contradiction.
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Remark 6. Instead of proving that the existence of a p-morphism from a product frame
for K4.3 ×K onto Fk leads to a contradiction, we could have proved Lemma 5 by playing
a two-player ‘p-morphism game.’ Versions of such games are widely used in connection
with axiomatisation problems in algebraic logic and many-dimensional modal logics, see e.g.
[12, 15]. In this game, two players ∃ and ∀ are building step-by-step homomorphisms from
larger and larger product frames for K4.3 × K to a finite or countably infinite 2-frame F.
At each step, ∀ can choose a ‘defect’ showing that the actual homomorphism is not a p-
morphism: an instance of points failing the backward condition. If ∃ can reply with a larger
homomorphism ‘fixing’ the chosen defect, then the game goes on, otherwise ∀ wins the game.
If ∃ can always go on infinitely long, no matter what are ∀’s choices, then we say that ∃ has
a winning strategy in the ω-step game over F. It is not hard to prove, using Claim 3, that
∃ has such a winning strategy iff F is a p-morphic image of a product frame for K4.3 ×K.
Figures 2 and 3 can be read as descriptions of a particular play of this game over Fk, won
by ∀: The black dots show the choices of ∀, and the empty circles are the points in possible
replies of ∃, until she fails to continue.

Let us now turn to the proof of (b). We define a new frame Gk = (V,�h, Sv) by adding
some points and arrows to Fk:

V = W ∪ {x, u, u′, v, w, z},

�h is the reflexive and transitive closure of
≤h ∪{(x, y), (y, x), (u, v), (u′, v), (v, w), (w, z)},

Sv = Rv ∪ {(x, u), (x, u′), (x, v), (x, z), (y, u), (y, u′), (y, w), (y, z)}∪
{(x, ui), (x, vi), (x, zi), (xi, u), (xi, u

′), (xi, v), (xi, z) : i < k},

see Fig. 4.

Lemma 7. Gk is a p-morphic image of (ω,≤)× Hω.

Proof. Let Fω be the irreflexive ω-fan with r as its root and ω × (k + 2) as its set of leaves.
We define a function f from (ω,≤)× Fω to Gk. To begin with, for all n < ω, we let

f(n, r) =


xi, if n = 3(` · k + i), ` < ω, i < k,
x, if n = 3`+ 1, ` < ω,
y, if n = 3`+ 2, ` < ω.

Then, for all n,m < ω, i < k + 2, we define f(n, (m, i)) by taking

ui, if i < k, n < 3m− 3,
ui, if i < k, m = ` · k + i+ 1 for some ` < ω, n = 3m− 3,
vi, if i < k, m 6= ` · k + i+ 1 for any ` < ω, n = 3m− 3,
vi, if i < k, n = 3m− 2,
wi, if i < k, n = 3m− 1,
zi, if i < k, n ≥ 3m,
u, if i = k, n < 3m− 3,
u′, if i = k + 1, n < 3m− 3,
v, if i = k or k + 1, n = 3m− 3 or 3m− 2,
w, if i = k or k + 1, n = 3m− 1,
z, if i = k or k + 1, n ≥ 3m.
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Figure 4: The new points and arrows of frame Gk.

It is tedious but straightforward to check that f is an onto p-morphism. Here is the trickiest
case only. Take some n < ω such that f(n, r) = xi, for some i < k. (Then n = 3(` · k + i) for
some ` < ω.) We need to show that (i) for all m < ω, j < k + 2, we have xiRvf(n, (m, j)),
and (ii) for all a in Gk, if xiRva, then there exist some m < ω, j < k+2 with a = f(n, (m, j)).

To begin with, the cases when j = k or j = k + 1 in (i), and a ∈ {u, u′, v, z} in (ii) are
straightforward. For the rest, we claim that the following holds, for every j < k:

{f(n, (m, j)) : m < ω} =
{
{uj , vj , zj}, if j 6= i,
{ui, zi}, if j = i.

(9)

Indeed, let us see the j 6= i case first. On the one hand, we have ⊆, as n is divisible by 3.
For ⊇: First, for any m > n+3

3 , we have f(n, (m, j)) = uj . Second, for any m ≤ n
3 , we have

f(n, (m, j)) = zj . Finally, observe that n+3
3 = ` · k + i + 1 6= `′ · k + j + 1 for any `′ < ω, as

i, j < k and i 6= j. So if m = n+3
3 , then f(n, (m, j)) = vj . This last observation also shows

that f(n, (m, i)) 6= vi for any m < ω, completing the proof of (9).

Lemma 8. Let k > 24m + 1, and let M be an m-generated model over Fk. Then there is a
model N over Gk−2 that is a p-morphic image of M.

Proof. Let M = (Fk, ϑ) be a model such that ϑ(pj) = ∅ for every propositional variable pj

with j ≥ m. We define an equivalence relation ∼m on the set {0, 1, . . . , k − 1} by taking, for
all i, j < k,

i ∼m j ⇐⇒ ∀` < m
((
xi ∈ ϑ(p`)↔ xj ∈ ϑ(p`)

)
∧
(
vi ∈ ϑ(p`)↔ vj ∈ ϑ(p`)

)
∧(

wi ∈ ϑ(p`)↔ wj ∈ ϑ(p`)
)
∧
(
zi ∈ ϑ(p`)↔ zj ∈ ϑ(p`)

))
.

As there are 24m many ∼m-classes on {0, 1, . . . , k − 1} and k > 24m + 1 > 24m, by the
pigeonhole principle, there exist i < j < k, such that i ∼m j.
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Let n0, . . . , nk−3 be an enumeration of {` < k : ` 6= i, j}. We define a function f from Fk

to Gk−2 by taking

f(an`
) = a`, for a ∈ {x, u, v, w, z}, ` < k − 2,

f(y) = y,
f(xi) = f(xj) = x,
f(ui) = u,
f(uj) = u′,
f(vi) = f(vj) = v,
f(wi) = f(wj) = w,
f(zi) = f(zj) = z.

Next, we define a model N = (Gk−2, θ) by taking, for all a in Gk−2, and for all ` < m,

a ∈ θ(p`) ⇐⇒ a = f(b) for some b ∈ ϑ(p`),

and θ(p`) = ∅, for ` ≥ m. It is straightforward to check that f is an onto p-morphism from
M to N, as required.

Now we can complete the proof of (b). Let L be a bimodal logic such that (ω,≤) × Hω

is a frame for L, and let k > 24m + 1. Then, by Lemma 8, for every m-generated model M

over Fk there is a model over Gk−2 that is a p-morphic image of M. By Lemma 7, Gk−2 is a
p-morphic image of (ω,≤)× Hω. Therefore, M |= L follows.

5 Arbitrarily large vertical depth is needed

In this section we prove Theorem 2. Let L be a bimodal logic such that

K4.3×K ⊆ L ⊆ Log{(ω,≤)} ×K.

In order to show that every axiomatisation of L must contain formulas of arbitrarily large
vertical depth, let us introduce some notions. Given a 2-frame G = (W,Rh, Rv) and x, y ∈W ,
a path in G from x to y is a sequence of points w0, . . . , wn in W such that w0 = x, wn = y,
and for each i < n, either wiRhwi+1 or wiRvwi+1. The vertical length of such a path is the
number of Rv-edges in it. Now, for every x ∈W and every k < ω, we define

W x,k = {x} ∪ {y ∈W : there is a path in G from x to y of vertical length ≤ k},
(G)x,k = (W x,k, R′h, R

′
v),

where R′h and R′v are the respective restrictions of Rh and Rv to W x,k (that is, (G)x,k is
the subframe of G having W x,k as its universe). Clearly, for every bimodal formula ϕ with
vd(ϕ) ≤ k,

if ϕ is valid in (G)x,k for every x ∈W , then ϕ is valid in G. (10)

Now we plan to proceed as follows. For every 0 < k < ω, we will define a 2-frame Gk such
that:

(a) Gk is not a frame for K4.3×K.

(b) For every point x in Gk, (Gk)x,k is a frame for Log{(ω,≤)} ×K.

10



This will prove Theorem 2 because of the following. Suppose that Σ axiomatises L, and there
is some k < ω such that vd(ϕ) ≤ k for every ϕ in Σ. Take a 2-frame Gk satisfying (b). As
Σ ⊆ L ⊆ Log{(ω,≤)} ×K, for every point x in Gk, (Gk)x,k is a frame for Σ. Thus by (10),
Gk is a frame for Σ. Therefore, Log{Gk} is a bimodal logic containing Σ, and so we have
that Gk is a frame for L. As K4.3 ×K ⊆ L, this implies that Gk is a frame for K4.3 ×K,
contradicting (a).

Let us begin with the definition of Gk = (W,≤h, Rv), for 0 < k < ω:

W = {u1, u2, u3, v1, v2, v3, v4} ∪ {w1
i , w

2
i , w

3
i : 1 ≤ i ≤ k},

≤h is the reflexive and transitive closure of
{(u1, u2), (u2, u3), (v1, v2), (v2, v3), (v3, v4)} ∪ {(w1

i , w
2
i ), (w2

i , w
3
i ), (w3

i , w
1
i ) : 1 ≤ i ≤ k},

Rv = {(u1, w
1
1), (u2, w

2
1), (u3, w

1
1), (u3, w

2
1), (u3, w

3
1)} ∪

{(w1
k, v1), (w1

k, v4), (w2
k, v1), (w2

k, v3), (w2
k, v4), (w3

k, v1), (w3
k, v2), (w3

k, v4)} ∪
{(w1

i , w
1
i+1), (w2

i , w
2
i+1), (w3

i , w
3
i+1) : 1 ≤ i < k},

see Fig. 5. Note that a vertically reflexive version of Gk would also do.
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Figure 5: The frames Gk, Gbot
k , and G

top
k .

Next, let us prove (a). Actually, we give two different proofs for Gk not being a frame for
K4.3×K: one using Claim 4 above, and another, more ‘direct’ one. For the first: As Gk is
a finite rooted 2-frame, by Claim 4, Gk is a frame for K4.3×K iff Gk is a p-morphic image
of a product frame for K4.3×K. Therefore, it is enough to show the following:

Lemma 9. Gk is not a p-morphic image of a product frame for K4.3×K.

Proof. Suppose that there is a p-morphism f from a product frame H = (U,≤0, R1) with tran-
sitive and weakly connected ≤0 onto Gk = (W,≤h, Rv). As u1≤h u2Rvw

2
1Rv . . . Rvw

2
kRvv3,

there exist a, b, c1, . . . , ck, c ∈ U such that a≤0 bR1c1R1 . . . R1ckR1c, f(a) = u1, f(b) = u2,
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f(c) = v3, and f(ci) = w2
i , for all 1 ≤ i ≤ k. As H is a product frame, there exist points

d1, . . . , dn, d ∈ U such that aR1d1R1 . . . R1dkR1d≤0 c. As f is a p-morphism, we must have
that f(d) = v1. As v1 <h v2 <h v3, by Claim 3, there exists e ∈ U such that d <0 e <0 c
and f(e) = v2. As H is a product frame, there exist e1, . . . , ek, x ∈ U such that di <0 ei <0 ci
for 1 ≤ i ≤ k, a <0 x <0 b, and xR1e1R1 . . . R1ekR1e. As f is a p-morphism, we must have
that f(ei) = w3

i , for all 1 ≤ i ≤ k. Further, f(x) should be such that u1 ≤h f(x) ≤h u2 and
f(x)Rvw

3
1. But there is no such f(x), a contradiction.

As a second proof for (a), observe that in fact the proof of Lemma 9 shows that the
following first-order (Π2) sentence Φk fails in Gk:

Φk : ∀a, b, c
[
a ≤h bR

k+1
v c→ ∃d

(
aRk+1

v d ≤h c ∧

∀e
(
d ≤h e <h c→ ∃x (a ≤h x ≤h b ∧ xRk+1

v e)
))]

(throughout, we use uRk+1
v w as a shorthand for ∃w1 . . . wk (uRvw1Rv . . . RvwkRvw)), see

Fig. 6. (Note that Fig. 6 also shows the steps in a particular play of the p-morphism game
over Gk that player ∀ wins, cf. Remark 6.)

∀

u u-6p
pp6
u

∃ d

u u-6p
pp6
ue -

6

ppp6 ∀e

<h <h

u u-6p
pp6
uue - -

6

ppp6 ∃x

u u- - 6

ppp
6
uu

e

e - -

6

ppp6
6

6ppp
a a a ab b b b

c c c cd d de e

x

k + 1
steps

Figure 6: The property Φk.

It is straightforward to see that Φk holds in every product frame for K4.3×K. Now we
will show that Φk is definable in the bimodal language, giving us an explicit bimodal formula
showing that Gk is not a frame for K4.3 ×K. To this end, for every n < ω and bimodal
formula ψ, we define 3n

1ψ by taking

30
1ψ = ψ and 3n+1

1 ψ = 313
n
1ψ.

Claim 10. There is a bimodal formula

ϕk : 30

(
p ∧3k+1

1 (r ∧ q ∧20q)
)
∧20(30p→ 2k+1

1 q) → 3k+1
1 (30r ∧20q)

such that, for all 2-frames F = (W,≤0, R1) with weakly connected ≤0, ϕk is valid in F iff Φk

holds in F.

Proof. Let F = (W,≤0, R1) be a 2-frame such that ≤0 is weakly connected.
⇐: Let M be a model based on F and suppose that, for some a ∈W ,

M, a |= 30

(
p ∧3k+1

1 (r ∧ q ∧20q)
)

and

M, a |= 20(30p→ 2k+1
1 q). (11)

12



So, there exist b, c ∈W such that a ≤0 bR
k+1
1 c and

M, b |= p (12)
M, c |= r (13)
M, c |= q ∧20q. (14)

Therefore, by Φk, there exists d ∈W such that aRk+1
1 d ≤0 c and for all e ∈W , if d ≤0 e <0 c

then there exists x ∈ W with a ≤0 x ≤0 b and xRk+1
v e. Then, by (13), we have M, d |= 30r.

We claim that M, d |= 20q also holds. Indeed, take some e ∈W with d ≤0 e. As ≤0 is weakly
connected, either e = c, or c ≤0 e, or e ≤0 c. In the first two cases, M, e |= q holds by (14).
If e <0 c then there is some x ∈W with a ≤0 x ≤0 b and xRk+1

v e. So M, e |= q holds by (11)
and (12).
⇒: Suppose that Φk fails in F, that is, there exists a, b, c ∈W such that a ≤0 bR

k+1
1 c and

all d ∈W are ‘bad.’ We define a model M = (F, ϑ) by taking

ϑ(p) = {b},
ϑ(q) = {c} ∪ {e : c ≤0 e} ∪ {e : ∃x (a ≤0 x ≤0 b ∧ xRk+1

1 e)},
ϑ(r) = {c}.

Then clearly M, a |= 30

(
p ∧ 3k+1

1 (r ∧ q ∧ 20q)
)
. We claim that M, a |= 20(30p → 2k+1

1 q).
Indeed, if a ≤0 x and M, x |= 30p, then a ≤0 x ≤0 b should hold, and so M, x |= 2k+1

1 q
follows. Next, we claim that M, a |= 2k+1

1 (30r → ¬20q). Indeed, take some d such that
aRk+1

1 d and M, d |= 30r. Then d ≤0 c and, by assumption, there is some e such that
d ≤0 e <0 c and xRk+1

1 e holds for no x with a ≤0 x ≤0 b. Therefore, M, e 6|= q and
M, d 6|= 20q follows, as required.

Let us now turn to the proof of (b). We define two special subframes of Gk:

• Let G
top
k be the subframe of Gk with universe W top = W − {u1, u2, u3}, and

• let Gbot
k be the subframe of Gk with universe W bot = W − {v1, v2, v3, v4},

see Fig. 5. It is straightforward to see the following:

Claim 11. For every point x in Gk, either (Gk)x,k is a generated subframe of G
top
k , or it is

a generated subframe of Gbot
k .

We complete the proof by showing that both G
top
k and Gbot

k are frames for L.

Lemma 12. G
top
k is a p-morphic image of (ω,≤)× F, for some frame F.

Proof. See Fig. 7 for a function f from (ω,≤)× F, where F is a kind of ‘rake:’ an irreflexive
and intransitive k − 1-long path, followed by an irreflexive ω-fan. (In Fig. 7 each point of
(ω,≤) × F is labelled by its f -image.) It is not hard to check that f is a p-morphism from
(ω,≤)× F onto G

top
k .

Lemma 13. Gbot
k is a p-morphic image of (ω,≤)× F, for some frame F.
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Figure 7: The p-morphism f from (ω,≤)× F onto G
top
k .

Proof. See Fig. 8 for a function g from F0 × F1, where F0 is a ‘balloon’ (a two-point reflexive
linear order, followed by a 3-point cluster), and F1 is a kind of ‘comb:’ a root seeing three
irreflexive and intransitive k-long branches. (In Fig. 8 each point of F0 × F1 is labelled by its
g-image.) It is not hard to check that g is a p-morphism from F0 × F1 onto Gbot

k . As F0 is a
p-morphic image of (ω,≤), the lemma follows.

6 Discussion

We conclude the paper with a few open problems about axiomatising two-dimensional product
logics.
(I) According to our present knowledge, a (recursively enumerable) product logic is either
non-finitely axiomatisable or product-matching. It would be interesting to find some finitely
axiomatisable but not product-matching product logic.
(II) Theorems 1 and 2 above do not apply to product logics K4.3 × L, where L has no
ω-fan among its frames. Important ‘standard’ logics of this kind are K4.3 and S5. So the
questions whether the recursively enumerable logics K4.3×K4.3 and K4.3×S5 are finitely
axiomatisable remain open. (The same applies to products with S4.3.)
(III) K4.3 × K4.3 is known to be not product-matching (see (3) in Section 1). Here we
present a 2-frame F = (W,≤0,≡1) showing that neither K4.3×S5 nor S4.3×S5 are product-
matching: In Fig.9, the horizontal arrows and ellipses represent the reflexive, transitive and
weakly connected ≤0, and the boxes, triangles and circles the ≡1-equivalence classes. It is not
hard to check that ≤0 and ≡1 commute. (In case of a symmetric second relation, the Church–
Rosser property follows from commutativity.) On the other hand, it is straightforward to see
that property Φ0 (see Fig. 6) fails in F.
(IV) As (ω,≤) is not a frame for Log {(ω,<)}, Theorems 1 and 2 do not apply to product
logics of the form Log {(ω,<)} × L. Some logics of this form, such as Log {(ω,<)} ×K and
Log {(ω,<)}×S5, are known to be recursively enumerable, even decidable [24], [9, Thms.6.33,
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6.60]. We do not know whether Log {(ω,<)} ×K or Log {(ω,<)}×S5 is finitely axiomatisable.
However, there is a related positive axiomatisation result. As is shown in [25] (see also [9,
Thm.11.78]), if we have in the language of the first component logic not only 20 and 30 but
also a next time operator X0, then the resulting logic Log2,X {(ω,<,+1)} × S5 is kind of
product-matching: One needs to take the formulas axiomatising the components, plus the
formula X021p ↔ 21X0, describing that X0 and the S5-box 21 commute. Note that the
proof of this axiomatisation result uses the fact that any rooted frame for Log2,X{(ω,<,+1)}
is a p-morphic image of its ‘standard’ frame (ω,<,+1). However, the similar statement about
arbitrary frames of Log {(ω,<)} is not true.
(V) As is shown in [17, Thm.2.10], if each Li, i < 2, is a logic such that its class of frames
is closed under ultraproducts, then L0 × L1 is a canonical bimodal logic. So, say, K4.3×K,
K4.3 ×K4, K4.3 ×K4.3, and K4.3 × S5 are such. However, the following questions are
open:

• Does any of these product logics have a canonical axiomatisation?
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• Is the class of all frames for any of these product logics closed under ultraproducts?

It is quite difficult to think about modally expressible properties that do not have first-order
correspondents. So answers to the above would directly be relevant to finding explicit, possibly
infinite, axiomatisations for the logics in question. In case of higher dimensional product
logics (and of algebras of relations) similar questions have negative answers [13, 14, 17]. It is
not known, however, whether the techniques used to achieve these results are applicable to
two-dimensional cases.

Acknowledgements. Sérgio Marcelino was partially supported by FCT and EU FEDER,
via the project FCT PEst-OE/EEI/LA0008/2011, the PhD grant SFRH/BD/27938/2006,
and the postdoc grant SFRH/BPD/76513/2011. We thank the anonymous referee for helpful
suggestions on improving the presentation.

References
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