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Abstract. We prove that every n-modal logic between Kn and S5n is unde-
cidable, whenever n ≥ 3. We also show that each of these logics is non-finitely

axiomatizable, lacks the product finite model property, and there is no algo-

rithm deciding whether a finite frame validates the logic. These results answer
several questions of Gabbay and Shehtman. The proofs combine the modal

logic technique of Yankov–Fine frame formulas with algebraic logic results of

Halmos, Johnson and Monk, and give a reduction of the (undecidable) repre-
sentation problem of finite relation algebras.

1. Introduction and results

Here we deal with axiomatization and decision problems of n-modal logics: propo-
sitional multi-modal logics having finitely many unary modal operators 30, . . . ,3n−1
(and their duals 20, . . . ,2n−1), where n is a non-zero natural number. Formulas
of this language, using propositional variables from some fixed countably infinite
set, are called n-modal formulas. Frames for n-modal logics — n-frames — are
structures of the form F = (F,R0, . . . , Rn−1) where Ri is a binary relation on F ,
for each i < n. A model on an n-frame F = (F,R0, . . . , Rn−1) is a pair M = (F , υ)
where υ is a function mapping the propositional variables into subsets of F . The
inductive definition of “formula ϕ is true at point x in model M” is the standard
one, e.g., the clause for 3i (i < n) is as follows:

M, x |= 3iψ iff ∃y (xRiy and M, y |= ψ).

Given an n-frame F and an n-modal formula ϕ, we say that ϕ is satisfiable in F if
M, x |= ϕ for some model M on F and point x in F . Similarly, ϕ is valid in F if
M, x |= ϕ for all such M and x. F is a frame for a set L of n-modal formulas if all
formulas of L are valid in F . L is called a Kripke complete n-modal logic if there
is some class C of n-frames such that L is the set of all n-modal formulas which
are valid in every member of C. This case we also say that L is the logic of C.
Well-known Kripke complete unimodal logics are K (the logic of all 1-frames) and
S5 (the logic of all 1-frames (W,R) with R being an equivalence relation on W ).

Special n-frames are the following (n-ary) product frames. Given 1-frames (i.e.,
usual Kripke frames for unimodal logic) F0 = (W0, R0), . . . ,Fn−1 = (Wn−1, Rn−1),
their product F0 × · · · × Fn−1 is defined to be the relational structure

(W0 × · · · ×Wn−1, R̄0, . . . , R̄n−1)

where, for each i < n, R̄i is the following binary relation on W0 × · · · ×Wn−1:

(u0, . . . , un−1)R̄i(v0, . . . , vn−1) iff uiRivi and uk = vk, for k 6= i.
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For each i < n, let Li be a Kripke complete unimodal logic (of the language having
modal operators 3i and 2i). Define the (n-dimensional) product logic

L0 × · · · × Ln−1

as the logic of the class of those product frames (W0, R0) × · · · × (Wn−1, Rn−1)
where, for each i < n, (Wi, Ri) is a frame for Li. For example, Kn is the logic of
all n-ary product frames. It is not hard to see that S5n is the logic of all n-ary
products of universal 1-frames, that is, 1-frames (Wi, Ri) with Ri = Wi × Wi

(i < n). Throughout, product frames of this kind are called universal product
S5n-frames. We write (W0, . . . ,Wn−1) for such a frame, and sometimes call it the
universal product frame on W0 × · · · ×Wn−1. Note that given a product frame

F = (W0 × · · · ×Wn−1, R̄0, . . . , R̄n−1) = (W0, R0)× · · · × (Wn−1, Rn−1),

for every i < n the ‘i-reduct’ F (i) = (W0×· · ·×Wn−1, R̄i) of F is a union of disjoint
copies of the 1-frame (Wi, Ri). Thus the same modal formulas are valid in F (i) and
(Wi, Ri). As a consequence we have that L = L0 × · · · × Ln−1 always includes Li

(i < n), and for every product frame F = F0 × · · · × Fn−1,

F is a frame for L iff Fi is a frame for Li, for all i < n.

Products of modal logics have been studied in both pure modal logic (see Seger-
berg [16], Shehtman [17], Gabbay–Shehtman [5]) and in computer science appli-
cations (see Wolter–Zakharyaschev [19], [20], Gabbay et al . [3] and the references
therein). Product logics are also relevant to finite variable fragments of modal and
intermediate predicate logics, see Gabbay–Shehtman [4]. Axiomatization, decision
and complexity problems of two-dimensional products were thoroughly investigated
in [5], Marx [14], Spaan [18]. In higher dimensions — n ≥ 3 from now on — the
first results related to product logics were obtained in algebraic logic. This is due
to the fact that the modal algebras corresponding to S5n are well-known in this
area: the representable diagonal-free cylindric algebras of dimension n. Thus the
respective algebraic logic results of Johnson [9] and Maddux [12] imply that S5n is
non-finitely axiomatizable and undecidable.

Given a recursively enumerable set L of n-modal formulas, if we can enumerate
those formulas which are not in L then we obtain a decision algorithm for L.
Obviously, this can be done if

(A) L has the finite model property , i.e., for every n-modal formula ϕ which is
not in L there is a finite frame for L where ϕ is not valid; and

(B) finite frames for L are recursively enumerable (up to isomorphism).
For instance, if L is a finitely axiomatizable Kripke complete logic then (B) clearly
holds for L. Product logics are defined as sets of modal formulas which are valid in
classes of product frames. It is important to stress that in general there are other
‘non-standard’, i.e. non-product frames for such logics. Thus we can enumerate
those formulas which are not in a product logic L if

(C) L has the product finite model property , i.e., for every n-modal formula ϕ
which is not in L there is a finite product frame for L where ϕ is not valid;
and

(D) finite product frames for L are recursively enumerable (up to isomorphism).
Clearly, if L is a product of finitely axiomatizable Kripke complete logics—such as
e.g. Kn, K4n, S5n—then (D) holds for L. Thus the undecidability and recursive
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enumerability of S5n (see e.g. Henkin et al . [7]) imply that S5n does not have
the product finite model property. Further, (C) obviously implies (A). The reverse
implication does not necessarily hold: Kn has the finite model property for every
n (Gabbay–Shehtman [5]), but lacks the product finite model property whenever
n ≥ 3 (see Theorem 4). Undecidability and the lack of product finite model property
for all product logics between K4n and S5n was first proved by Zakharyaschev (see
[3]). Non-finite axiomatizability of Kn was shown in Kurucz [10]. The fact that
Kn has the finite model property while S5n (n ≥ 3) does not (Kurucz [11]) gave
some hope about the decidability of Kn. As our results below show, this is not the
case: in higher dimensions all logics between Kn and S5n are quite complicated.

Let n ≥ 3 and let L be any set of n-modal formulas with Kn ⊆ L ⊆ S5n. Then
the following hold.

Theorem 1. L is undecidable.

Theorem 2. It is undecidable whether a finite frame is a frame for L.

Theorem 3. L is not finitely axiomatizable.

Theorem 4. L does not have the product finite model property in the following
strong sense: there is some (3-modal) formula ϕ which does not belong to L but ϕ
is valid in all finite k-ary product frames, for all k ≥ 3.

Theorems 4, 1 and 3 answer questions 20, 22 and 24 of Gabbay–Shehtman [5]
(cf. also Q16.163 of Gabbay [2]): Kn lacks the product finite model property for
n ≥ 3, K3 is undecidable, and all the logics of the form L × S52 are undecidable
and non-finitely axiomatizable, if K ⊆ L ⊆ S5. Thus K3 is a natural example of an
undecidable but recursively enumerable logic which has the finite model property.

In the proofs we will use the following result of Hirsch–Hodkinson [8]:
(∗) It is undecidable whether a finite simple relation algebra is representable.1

For any natural number n ≥ 3 and any finite simple relation algebra A (see Section 3
for definitions), we define (in a recursive way) a finite n-frame FA,n and a 3-modal
formula ϕA, and prove the following lemmas.

Lemma 5. Let L be any set of n-modal formulas with Kn ⊆ L ⊆ S5n, for some
n ≥ 3. Then the following are equivalent:

(i) FA,n is a frame for L.
(ii) The formula ¬ϕA does not belong to L.
(iii) FA,3 is a p-morphic image of some universal product S53-frame.

Lemma 6. A is representable iff FA,3 is a p-morphic image of some universal
product S53-frame. Further, A is representable with a finite base iff FA,3 is a p-
morphic image of some finite universal product S53-frame.

Now Theorems 1 and 2 follow straightforwardly from (∗) and Lemmas 5, 6.
Theorem 3 follows from Theorem 2, since if L were finitely axiomatizable then
there would be a recursive test for finite frames being frames for L. We prove
Lemmas 5, 6 and Theorem 4 in Section 3. Note that if L is recursively enumerable

1In [8] this statement is not claimed for finite simple relation algebras, but for finite relation

algebras in general only. However, this implies the result also for finite simple relation algebras,

by taking subdirect decompositions. Or, in another way: the relation algebras constructed in the
proof of [8] are clearly simple, thus the proof therein works for simple relation algebras as well.
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and finite product frames for L are also recursively enumerable (such as, e.g., for
Kn, K4n, S5n) then the lack of product finite model property for L already follows
from Theorem 1.

2. Frame formulas in product frames

In this section we establish a connection between arbitrary product frames and
product frames for S53. This connection (Claim 7 below) is the heart of the proof
of Lemma 5.

Let F = (F,R0, R1, R2) be a finite 3-frame with the following property:

(1) (∀p, p′ ∈ F )(∃s0, s1 ∈ F ) pR0s0, s0R1s1 and s1R2p
′.

(For example, universal product S53-frames have this property.) For each point
p ∈ F , introduce a propositional variable, denoted also by p. Define ϕF as the
Yankov–Fine frame formula of F :

2+
∨
p∈F

(p ∧ ¬
∨

p′∈F−{p}

p′)(2)

∧ 2+
∧

i<3,p,p′∈F
pRip′

p→ 3ip
′(3)

∧ 2+
∧

i<3,p,p′∈F
¬(pRip′)

p→ ¬3ip
′.(4)

Here, 2+
i ψ abbreviates ψ∧2iψ, and 2+ψ abbreviates 2+

0 2+
1 2+

2 ψ. Then clearly ϕF
is satisfiable in F : Take the model M = (F , υ) with υ(p) = {p}. Then M, q |= ϕF ,
for any q ∈ F . Moreover, it is straightforward to see the following (cf. [1] for the
unimodal case):

For any 3-frame H with property (1), H satisfies ϕF iff there is a
generated subframe H− of H which maps p-morphically onto F .

The following claim is a modification of this statement which applies to arbitrary
product frames satisfying ϕF .

Claim 7. Let F = (F,R0, R1, R2) be a finite 3-frame such that the Ri are equiva-
lence relations and (1) holds in F . If ϕF is satisfiable in an n-ary product frame
H, for some n ≥ 3, then there is a universal product S53-frame H− which maps
p-morphically onto F . Further, if H is finite then H− can be chosen finite as well.

Proof. Assume ϕF is satisfiable in an n-ary product frame

H = (U0, S0)× (U1, S1)× (U2, S2)× · · · × (Un−1, Sn−1).

Let the model M on H and ui ∈ Ui (i < n) be such that

M, (u0, u1, u2, u3, . . . , un−1) |= ϕF .

We fix u3, . . . , un−1 and write v0v1v2ū for points (v0, v1, v2, u3, . . . , un−1) of H. For
i < 3, take

U−i = {v ∈ Ui : v = ui or uiSiv}.
Define a function h : U−0 × U

−
1 × U

−
2 → F as follows:

h(v0, v1, v2) = p iff M, v0v1v2ū |= p.



ON MODAL LOGICS BETWEEN K×K×K AND S5× S5× S5 5

Then h is well-defined by (2). We claim that h is a p-morphism from the universal
product S53-frame H− = (U−0 , U

−
1 , U

−
2 ) onto F .

First, h is onto by (2), (3) and (1). Next we show that if i < 3, (p0, p1, p2),
(q0, q1, q2) ∈ U−0 × U−1 × U−2 , pj = qj for j 6= i, j < 3, M, p0p1p2ū |= p and
M, q0q1q2ū |= p′ then pRip

′. We may assume without loss of generality that i = 0.
By definition of U−0 , either p0 = u0 or u0S0p0, and similarly, either q0 = u0 or
u0S0q0. By (2), there is a unique p′′ ∈ F with M, u0p1p2ū |= p′′. We claim
that p′′R0p and p′′R0p

′. Indeed, if p0 = u0 then p = p′′, thus p′′R0p holds by
reflexivity of R0. If u0S0p0 then M, u0p1p2ū |= p′′∧30p which, by (4), implies that
p′′R0p. Similarly, one can show that p′′R0p

′. Now pR0p
′ follows, by symmetry and

transitivity of R0.
Finally, we show that if (p0, p1, p2) ∈ U−0 ×U

−
1 ×U

−
2 , M, p0p1p2ū |= p and pR0p

′

then there is some v ∈ U−0 such that M, vp1p2ū |= p′. Similar statements hold for 1
and U−1 , and 2 and U−2 , respectively. Indeed, as we saw in the previous paragraph,
p′′R0p for the unique p′′ ∈ F with M, u0p1p2ū |= p′′. Then p′′R0p

′ follows by
transitivity of R0. By (3), M, u0p1p2ū |= 30p

′ holds, thus there is some v ∈ U−0
with M, vp1p2ū |= p′.

Note that in general, even if H is a ternary product frame, H− is far from being a
subframe of H. However, the set of points of H− is in a one-to-one correspondence
with a subset of the set of points of H. So if H is finite then H− is finite as well. �

3. Relation algebras and product frames

A relation algebra is a structure of form A = (A,+, ·,−, 1, 0, ;, ,̆ 1′) satisfying the
following properties, for all x, y, z ∈ A:

• (A,+, ·,−, 1, 0) is a Boolean algebra
• x ;(y ; z) = (x ; y) ; z
• x˘̆ = x and x ; 1′ = 1′ ;x = x
• ; and ˘ distribute over + (thus they are monotone with respect to Boolean
≤)

• cycle law: x · (y ; z) = 0 ⇐⇒ y · (x ; z )̆ = 0 ⇐⇒ z · (y˘;x) = 0.

Note that this list of properties is not the “official” (equational) axiomatization
for relation algebras: though it is equivalent, see Maddux [13] for a discussion.
A relation algebra is atomic if its Boolean reduct is an atomic Boolean algebra.
Thus, finite relation algebras are atomic. A relation algebra is simple if it has no
non-trivial homomorphic images. It is well-known (cf. e.g., [13, Thm.17]) that a
relation algebra A is simple iff 1 ; a ; 1 = 1 holds, for all a 6= 0 in A.

A natural example is the (simple) relation algebra of all subsets of U×U , for some
non-empty set U . Here ; is the composition (relative product) of binary relations, ˘
is converse (inverse), and 1′ is the identity relation on U . A simple relation algebra
is called representable with base U if it is embeddable into the relation algebra of
all subsets of U × U . As we already mentioned, it follows from the main result of
[8] that there is no algorithm deciding whether a finite simple relation algebra is
representable.

Now take some finite simple relation algebra A. Call a triple (t0, t1, t2) of atoms
of A consistent if t2˘≤ t0 ; t1 holds.
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the set of all such points. For t, t′ ∈ TA and i < 3 define tRit

′ iff ti = t′i. For
3 ≤ i < n, let Ri be the identity on TA, and let FA,n = (TA, R0, R1, R2, . . . , Rn−1).
Then clearly FA,n is finite and the Ri are equivalence relations.

Claim 8. FA,3 has property (1) above.

Proof. Take some t, t′ ∈ TA. Since ; and ˘ are monotone and A is simple, there are
atoms x, y of A with t0̆ ≤ x˘; t′2˘; y. Thus there is an atom z such that t0̆ ≤ z ; y
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Now define ϕA as the Yankov–Fine frame formula of FA,3 (cf. Section 2).

Proof of Lemma 5. For (i) implies (ii): Assume FA,n is a frame for L. Since ϕA is
3-modal and satisfiable in FA,3, it is satisfiable in FA,n, for any n ≥ 3. Therefore,
¬ϕA is not valid in FA,n, thus it does not belong to L.

For (iii) implies (i): Suppose FA,3 is a p-morphic image of some universal product
S53-frame G0 × G1 × G2. Then clearly FA,n is a p-morphic image of the universal
product S5n-frame G0 × G1 × G2 × · · · × Gn−1, where Gi is the one-point reflexive
frame, for each 3 ≤ i < n. Thus, by L ⊆ S5n, FA,n is a frame for L.

Finally, if (ii) holds, that is, if ¬ϕA does not belong to L then, by Kn ⊆ L, ϕA

is satisfiable in an n-ary product frame. Thus (iii) follows, by Claim 7. 2

Proof of Lemma 6. This follows from a chain of known results in algebraic logic
and duality between Kripke frames and Boolean algebras with operators. Here we
only list these results, but in Appendix B below we give the proofs in a modal logic
setting. For notions not defined here as well as a detailed summary of properties
of relation algebras and connections with cylindric algebras, consult Maddux [13].

As it was introduced in Monk [15], given a finite simple relation algebra A as
above, one may construct a 3-dimensional cylindric algebra

Ca3A = (B,+, ·,−, 1, 0, ci, dij)i,j<3

as follows: (B,+, ·,−, 1, 0) is the Boolean set algebra of all subsets of TA; for each
i < 3, the unary operation ci — the ith cylindrification — is defined by

ciX = {t ∈ TA : ∃t′ ∈ X with ti = t′i}, for all X ⊆ TA;

and the diagonal elements, for i, j < 3, are

dij = {t ∈ TA : tk ≤ 1′},
where k < 3, k 6= i, j and 1′ is the identity element of the relation algebra A.
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Then the frame FA,3 above is the atom structure of the diagonal-free reduct
Df3A of Ca3A. Further, Df3A is clearly finite and c0c1c2X = 1 hold in Df3A, for
all X 6= 0, by property (1) of FA,3. Thus Df3A is simple.

It was shown in Monk [15] that

A is representable (as a relation algebra) iff Ca3A is representable
(as a cylindric algebra). Further, A is representable with a finite
base iff Ca3A is representable with a finite base.

Since Df3A is a reduct of a 3-dimensional cylindric algebra and generated by binary
elements, the following statement holds (see Johnson [9], Halmos [6], cf. also [7,
Thm.5.1.51]):

Ca3A is representable (as a cylindric algebra) iff Df3A is repre-
sentable (as a diagonal-free cylindric algebra). Further, Ca3A is
representable with a finite base iff Df3A is representable with a
finite base.

Finally, since Df3A is finite and simple, from basic duality theory we have:

Df3A is representable with base (U, V,W ) (i.e., embeddable into
the diagonal-free cylindric set algebra of all subsets of U × V ×W )
iff its atom structure FA,3 is a p-morphic image of the universal
product S53-frame on U × V ×W .

Now the lemma clearly follows. 2

Proof of Theorem 4. Take some finite, simple, representable relation algebra A
which is representable only with an infinite base (e.g., the linear or point relation
algebra, cf. Maddux [13, §2]), and consider the 3-frame FA,3 and the 3-modal for-
mula ϕA. Then, by Lemmas 5 and 6, ¬ϕA is not in L. We show that ¬ϕA is valid in
all finite k-ary product frames, for any k ≥ 3. Suppose there is some finite product
frame satisfying ϕA. Then, by Claim 7, FA,3 is a p-morphic image of some finite
universal product S53-frame. This contradicts Lemma 6, since A is representable
only with an infinite base. Note that in Appendix A we demonstrate how such a
formula forces an infinite product frame. 2

Appendix A

Here we give a 6-element 3-frame F and demonstrate how the Yankov–Fine
frame formula of F can be satisfied in an infinite product frame only. This F is a
simplification of the 3-frame FA,3 obtained from the linear (point) relation algebra
which is used in the proof of Theorem 4. Note that our formula Φ ‘forces’ product
frames which are infinite rather ‘in width’ than ‘in depth’: we will see that if Φ is
true at a point (x, y, z) in a model on a product frame (U, SU )× (V, SV )× (W,SW )
then the sets {u ∈ U : xSUu} and {v ∈ V : ySV v} are both infinite.

Let F consist of all permutations of the set {0, 1, 2}. For i < 3, define Ri as
“forgetting about i in the triples”, that is, for p, q ∈ F , let pRiq iff

(p(j) < p(k) iff q(j) < q(k)), whenever {i, j, k} = {0, 1, 2},

and let F = (F,R0, R1, R2). Throughout, given some p ∈ F , we write pi for p−1(i)
and identify p with the triple p0p1p2, cf. Figure 1. Also, we use notation p = ∗i∗j∗,
whenever p(i) < p(j) holds.
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Figure 1. The 6-element 3-frame F .

Then the Ri are clearly equivalence relations and it is not hard to see that F
has property (1). Let Φ be the Yankov–Fine frame formula of F :

2+
∨
p∈F

(p ∧ ¬
∨

p′ 6=p

p′) ∧ 2+
∧

i<3,p,p′∈F
pRip′

(p→ 3ip
′) ∧ 2+

∧
i<3,p,p′∈F
¬(pRip′)

(p→ ¬3ip
′).

Claim 9. There is a product frame satisfying Φ.

Proof. Let Q0, Q1 and Q2 be three pairwise disjoint, dense subsets of the rationals.
Take the universal product S53-frame (Q0, Q1, Q2) and define a valuation υ of the
variables as follows:

υ(p) = {(x0, x1, x2) ∈ Q0 ×Q1 ×Q2 : xp0 < xp1 < xp2}.
Now let M = (Q0, Q1, Q2, υ). It is not hard to check that M, (x0, x1, x2) |= Φ, for
any (x0, x1, x2). �

Claim 10. Any product frame satisfying Φ is infinite.

Proof. Let M be a model on the product frame (U, SU ) × (V, SV ) × (W,SW ). We
write xyz rather than (x, y, z) for points of M. Suppose that x0 ∈ U , y0 ∈ V ,
z0 ∈W are such that

(5) M, x0y0z0 |= Φ and, say, M, x0y0z0 |= 201.

We will show that both U and V must be infinite sets. Let 0 < n < ω and assume
inductively that we have defined points xi ∈ U and yi ∈ V for each i < n satisfying:

x0SUxi and y0SV yi, for 0 < i < n,

xi 6= xj and yi 6= yj , for i, j < n, i 6= j,

M, xiyjz0 |= 201, for i ≤ j < n,(6)
M, xiyjz0 |= 210, for j < i < n.(7)

We will now define xn and yn. First consider xn. We have 201R0210 and, by (6),
M, x0yn−1z0 |= 201. By (5), there is some xn ∈ U such that

(8) x0SUxn and M, xnyn−1z0 |= 210.

By (5) and (6), xn 6= xi, for i < n. We show that

(9) M, xnyiz0 |= 210, for all i < n− 1,

must hold (cf. Figure 2). We need the following claim:

Claim 10.1. There are no points u0, u1 ∈ U and v0, v1 ∈ V such that
• M, u0v0z0 |= 210 and M, u1v1z0 |= 210,
• M, u0v1z0 |= 201 and M, u1v0z0 |= 201,
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Figure 2. The points xn and yn.

and, for each i < 2,
• either ui = x0 or x0SUui, and
• either vi = y0 or y0SV vi.

Proof of Claim 10.1. Assume u0, u1, v0, v1 are as above. We will use (5) all the time
(cf. Figure 3). Since M, u0v1z0 |= 201 and 201R2021, thus there is some z ∈ W
such that z0SW z and

(10) M, u0v1z |= 021.

Then M, u0y0z |= a, for some a ∈ F with a = ∗0∗2∗, which implies

(11) M, u0v0z |= b, for some b ∈ F with b = ∗0∗2 ∗ .

On the other hand, M, u0v0z0 |= 210 by assumption. Thus b = ∗1∗0∗, which implies

(12) b = 102,

by (11). Further, by (10), M, x0v1z |= c, for some c ∈ F with c = ∗2∗1∗. Thus
M, u1v1z |= d, for some d ∈ F with d = ∗2∗1∗. On the other hand, since by
assumption M, u1v1z0 |= 210, d = ∗1∗0∗ must hold, thus d = 210. Therefore,
M, u1y0z |= e, for some e ∈ F with e = ∗2∗0∗. Thus M, u1v0z |= f , for some
f ∈ F with f = ∗2∗0∗. By (12), we have M, x0v0z |= g, for some g ∈ F with
g = ∗1∗2∗. Therefore f = ∗1∗2∗, and thus f = 120 must hold. Finally, this
implies that M, u1v0z0 |= h, for some h ∈ F with h = ∗1∗0∗, which contradicts the
assumption M, u1v0z0 |= 201. 2
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Now one can prove (9) as follows. Take some i < n − 1. Then we have
M, xn−1yiz0 |= 210, by (7). Therefore M, x0yiz0 |= k, for some k ∈ F with
k = ∗2∗1∗. Thus M, xnyiz0 |= `, for some ` ∈ F with ` = ∗2∗1∗. On the other
hand, by (8), M, xny0z0 |= m, for some m ∈ F with m = ∗2∗0∗, thus ` = ∗2∗0∗
must hold. Therefore, either ` = 201 or ` = 210. Now apply Claim 10.1 with
u0 = xn−1, u1 = xn, v0 = yi and v1 = yn−1 to obtain ` = 210.

Next we define yn. We have 210R1201 and we have just shown M, xny0z0 |= 210.
By (5), there is some yn ∈ V such that

(13) y0SV yn and M, xnynz0 |= 201.

By (5), (8) and (9), yn 6= yi, for i < n. It remains to show that, for all i < n,
M, xiynz0 |= 201 hold as well. To this end, take some i < n. By (13), we have
M, x0ynz0 |= p, for some p ∈ F with p = ∗2∗1∗. Thus M, xiynz0 |= q, for some
q ∈ F with q = ∗2∗1∗. On the other hand, q = ∗2∗0∗ by (6) and (7), thus either
q = 201 or q = 210. Now apply Claim 10.1 with u0 = xi, u1 = xn, v0 = yn and
v1 = yn−1 to obtain q = 201. This way we showed that both U and V must be
infinite sets, which completes the proof of Claim 10. �

Appendix B

In order to make the paper self-contained, here we prove Lemma 6 (via Claims 11–
14), using notions of modal logic only. However, we would like to emphasize that
these proofs are just ‘modal mirror images’ of the algebraic proofs of Halmos [6],
Johnson [9] and Monk [15].
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Claim 11. If the (finite, simple) relation algebra A is representable with base U
then the 3-frame FA,3 is a p-morphic image of the universal product S53-frame on
U × U × U .

Proof. Assume there is some function rep embedding A into the relation algebra of
all subsets of U ×U . Define the following function h from U ×U ×U to the set TA

of consistent triples of atoms of A:

h(u0u1u2) = t0t1t2 iff (u0, u1) ∈ rep(t2), (u2, u0) ∈ rep(t1), (u1, u2) ∈ rep(t0).

It is easy to check that h is well-defined, and a p-morphism onto FA,3. �

Take a finite simple relation algebra A and define, for each i < j < 3, a subset
Eij of the set TA as follows. Let k < 3 be different from both i and j. Then take

Eij = {t ∈ TA : tk ≤ 1′}.

(Recall that 1′ denotes the identity element of A.) It is not hard to see that the
following properties hold, for all i < j < 3:

(∀t ∈ TA)(∃t′, t′′ ∈ Eij) tRit
′ and tRjt

′′(14)
(∀t, t′ ∈ TA) t ∈ Eij and tRkt

′ implies t′ ∈ Eij (k < 3, k 6= i, j)(15)
E01 ∩ E02 ⊆ E12, E01 ∩ E12 ⊆ E02, E02 ∩ E12 ⊆ E01(16)
(∀t, t′ ∈ Eij) tRit

′ or tRjt
′ implies t = t′.(17)

Claim 12. Assume that there is a p-morphism h from a universal product S53-
frame (U0, U1, U2) onto FA,3. Let U be the disjoint union of the sets Ui, i < 3.
Then there is a p-morphism f from the universal product S53-frame (U,U, U) onto
FA,3 such that

(18) (∀u0u1u2 ∈ U × U × U)(∀i < j < 3) ui = uj implies f(u0u1u2) ∈ Eij .

Proof. Note first that for any triple of surjections fi : U → Ui (i < 3), the map f
defined by

f(u0u1u2) = h(f0(u0)f1(u1)f2(u2))

is a p-morphism from (U,U, U) onto FA,3. We will define surjections fi : U → Ui

(i < 3) such a way that (18) holds.
We claim that for every u0 ∈ U0 there is a point gu0 = u0u1u2 in U0×U1×U2 such

that h(gu0) ∈ E01∩E02∩E12. Indeed, take any u0xy ∈ U0×U1×U2. By (14), there
is a u1 ∈ U1 with h(u0u1y) ∈ E01, and there is a u2 ∈ U2 with h(u0u1u2) ∈ E12.
By (15), h(u0u1u2) ∈ E01 also holds, and so, by (16), h(u0u1u2) ∈ E02. In the
same way we can show that for every u1 ∈ U1 (u2 ∈ U2) there is gu1 = u0u1u2

(respectively, gu2 = u0u1u2) in U0 × U1 × U2 such that h(gu1) ∈ E01 ∩ E02 ∩ E12

(and h(gu2) ∈ E01 ∩ E02 ∩ E12).
Define maps fi from U onto Ui (i < 3) by taking fi(u) to be the i-th coordinate

of gu, for every u ∈ U . (Since fi is the identity on Ui, fi is surjective.) Define
f : U × U × U → TA as above. We show that f satisfies (18). For any u ∈ U ,

f(uuu) = h(f0(u)f1(u)f2(u)) = h(gu) ∈ E01 ∩ E02 ∩ E12.

For any v ∈ U , f(uuv) ∈ E01, f(uvu) ∈ E02 and f(vuu) ∈ E12 follow, by (15). �
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Claim 13. Assume there is a p-morphism f from some universal product S53-frame
(U,U, U) onto FA,3 such that (18) holds. Then there is some set V with |V | ≤ |U |
and a p-morphism g from (V, V, V ) onto FA,3 such that

(19) (∀v0v1v2 ∈ V × V × V )(∀i < j < 3) vi = vj iff g(v0v1v2) ∈ Eij .

Proof. For every i < j < 3, we define a relation Dij ⊆ U × U by taking

Dij = {(x, y) ∈ U×U : ∃u0, u1, u2 ∈ U with ui = x, uj = y and f(u0u1u2)∈Eij}.
In fact, these three relations coincide. Let us check, for instance, that we have
D01 ⊆ D02. Suppose f(xyz) ∈ E01. By (15), f(xyy) ∈ E01 and by (18), f(xyy) ∈
E12. It follows then from (16) that f(xyy) ∈ E02.

Let D denote the relation D01 = D02 = D12. We show that D is an equivalence
relation on U . By (18) it is reflexive. To show symmetry, let f(xyz) ∈ E01. By
(15), f(xyx) ∈ E01 as well. On the other hand, f(xyx) ∈ E02, by (18). Thus, by
(16), f(xyx) ∈ E12 which implies (y, x) ∈ D. To prove transitivity, suppose xD01y
and yD12z. Thus f(xys) ∈ E01 and f(ryz) ∈ E12, for some s and r. Therefore, by
(15), f(xyz) ∈ E01 ∩ E12 and, by (16), f(xyz) ∈ E02, that is, xD02z.

Denote by [u] the D-equivalence class containing u. Let V = {[u] : u ∈ U}.
Define the function g : V × V × V → TA by taking

g([u0][u1][u2]) = f(u0u1u2).

We show that this g is well-defined: If uiDvi, for each i < 3, then f(u0u1u2) =
f(v0v1v2) holds. We prove first that f(u0u1u2) = f(u0v1u2), if u1Dv1. We do this
by showing that, for each i < 3, f(u0u1u2)i = f(u0v1u2)i, i.e., they are the same
atom of A. For i = 1 it is obvious by the definition of FA,3. Next, let i = 2. By
(14), there is some x ∈ U with f(u0u1x) ∈ E12, thus u1Dx follows, which implies
v1Dx. Thus there is some y ∈ U with f(yv1x) ∈ E12. By (15), f(u0v1x) ∈ E12 also
holds, thus, by (17), f(u0u1x) = f(u0v1x). Therefore,

f(u0u1u2)2 = f(u0u1x)2 = f(u0v1x)2 = f(u0v1u2)2.

The case of i = 0 is analogous. Further, it can be shown similarly that f(u0v1u2) =
f(v0v1u2) and f(v0v1u2) = f(v0v1v2) also hold, which proves that g is well-defined.

It is obvious by its definition that g is a p-morphism onto FA,3 satisfying (19). �

Claim 14. Assume there is a p-morphism g from some universal product S53-
frame (V, V, V ) onto FA,3 such that (19) holds. Then the relation algebra A is
representable with base V , that is, A is embeddable into the set relation algebra of
all subsets of V × V .

Proof. Recall that the points of FA,3 are the consistent triples of atoms of A. Define
the representation rep of A with base V as follows: For each atom c of A, take

rep(c) = {(u, v) ∈ V × V : ∃w ∈ V with g(uvw)2 = c}.
Then, by the definition of FA,3, rep(c1) and rep(c2) are disjoint, whenever c1 6= c2.
Extend rep to any element x of A by taking

rep(x) =
⋃
{rep(c) : c is an atom of A and c ≤ x}.

It is straightforward to check that rep is a Boolean embedding. We show that it is
a relation algebra homomorphism. First, rep(1′) = {(u, u) : u ∈ V } holds because
of (19). Since ; and ˘ distribute over Boolean join, it is enough to show that rep
preserves ; and ˘ for atoms. To this end, we need the following claim:
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Claim 14.1. For all u, v, w ∈ V and atoms a, b, c of A,

g(uvw) = abc iff (u, v) ∈ rep(c), (v, w) ∈ rep(a) and (w, u) ∈ rep(b).

Proof of Claim 14.1. We use the following property of FA,3 all the time. For all
t ∈ TA, i < j < 3 and k < 3 with k 6= i, j,

(20) t ∈ Eij =⇒ tk ≤ 1′ =⇒ ti = tj̆ .

Suppose that g(uvw) = abc. Then (u, v) ∈ rep(c) by definition. In order to prove
(v, w) ∈ rep(a), we show — with the help of (19) and (20) — that g(vwu) = bca:

g(uvw) = abc g(uvw) = abc g(uvw) = abc
R1 R2 R0

g(uww) = ∗bb̆ g(uvu) = c̆ ∗c g(vvw) = aă ∗
R2 R0 R1

g(uwu) = b∗b̆ g(vvu) = c̆ c∗ g(vww) = ∗ă a
R0 R1 R2

g(vwu) = b∗∗ g(vwu) = ∗c∗ g(vwu) = ∗∗a.

Similarly, one can show g(wuv) = cab, thus (w, u) ∈ rep(b). For the other direction,
by (20) we know that g(wuw) = b̆ ∗b and g(vww) = ∗ă a, thus again an argument
similar to the above proves g(uvw) = abc. 2

Using (20) and Claim 14.1, it is not hard to check that rep(c)̆ = rep(c̆ ) and
rep(c1 ; c2) = rep(c1) ; rep(c2) hold, for any atoms c, c1, c2. �
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