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Abstract. We give an overview of decidability results for modal logics having a binary modality. We 
put an emphasis on the demonstration of proof-techniques, and hope that this will also help in finding 
the borderlines between decidable and undecidable fragments of usual first-order logic. 
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We investigate here decidability problems concerning logics having an extra bina- 
ry connective "o" beside the Boolean ones. These logics are strongly related to 
ordinary first-order logic, see Henkin et al. (1985, ch. 5.3) on this connection in an 
algebraic setting. Our most important aims are to give a transparent overview of 
the results and to stress the crucial points and ideas of the proofs, especially when 
the extra binary connective is associative�9 The emphasis is on those parts of the 
proof methods which have been well known for the specialists. (The reason for this 
is the didactic character of  the present paper�9 For the details of those ideas which 
are our own contributions we give references to more technical papers. 

Since associativity o f"o"  corresponds to commutativity of first-order existential 
quantifiers in some sense (cf. op cit), our results and techniques can help to find 
decidable fragments of first-order logic as well (for such results see N6meti (1985, 
1987, 1992))�9 

1. Preliminaries 

We say that/2 is a logic with a binary rnodality iff (1-3) below hold. 
1. The language of 12 includes the usual Boolean connectives and a binary con- 

nective "o" "e" , ,  , ,  def �9 denotes the dual of o , i.e. (~ �9 ~b) = -,(--,~ o --,~b). We stress 

* Research supported by the Hungarian National Foundation for Scientific Research grants no. 
T16448, F17452, T7255. Research of the first author is also supported by a grant of Logic Graduate 
School of E/StvOs Lor~knd University Budapest. 



192 AGNES KURUCZ ET AL. 

at this point that there may be further connectives in the language. Formulas of 
s (Fz:) are built up from an infinite set {P0, P l , . . .  } of propositional variables 
with the help of the connectives in the usual way. 

2. E has (pt) and (K) below among its axioms. 
(pt) all propositional tautologies; 
(K) ((Po --+ P l )  " P 2 )  --+ ((Po " P 2 )  ---r (Pl ~  

(po �9 (pl --, ;2))  ((p0 �9 pl)  (p0 �9 ;2)).  
3. The set of validities (theorems) of E is closed under substitution, modus ponens 

and the following "replacement of equivalents": 

A logic with a binary modality is called normal iff the set of validities of s is 
also closed under the necessitation rules: 

~ o ~  ~ o ~  " 

We note that, according to the definition above, "o" is a "<>-type" and "o" is 
a "D-type" connective. We also note that, by a classical theorem of J6nsson and 
Tarski (1948), the minimal* normal logic with a binary modality is strongly sound 
and complete w.r.t, the following class F of Kripke-frames: 

~-aer {(W, C) " W i s  aset, C c W x W x W} 

(with the usual truth definition for "o": 

w l l -~o~b  iff (3u, v E W ) ( O ( w , u , v ) a n d u  l l -~andv  l]-~ ). 

There are special frames whose worlds are pairs and the accessibility relation 
C acts as composition between them. A square frame is a frame (W, C), where 

W = U • U for some set U and 
C = {((a, c), (a, b), (b, c)) : a ,b,c e U}. 

The set U is called the base set of the square frame. Similar frames are discussed in 
connection with Arrow Logics (which are logics with a binary modality), cf. e.g. 
van Benthem (1994), Venema (1992). 

The o-fragment of a logic s with a binary modality is the set of those validities 
of s which include only "o" and Boolean connectives. 

A logic s (perhaps in a language with more connectives) is called a square 
extension of the minimal logic with a binary modality iff the o-fragment of s is 
valid in all square frames. An example for a square extension is the logic with a 

�9 By s being minimal among logics having some properties we always understand the following: 
(i) the language of E is the 'smallest possible' (e.g. in case of logics with a binary modality, the 
language consists of the Booleans and "o" only); (ii) for any logic El having the particular properties, 
and for any T U {~} C Fz, T F-L ~ implies T F-k, ~. 
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binary modality (having only the Booleans and "o" as connectives) characterized 
by the class of all square frames. 

A logic Z: is decidable iff there is an algorithm deciding whether a formula is 
valid in s or not. 

In this paper all the logical results are proved in an algebraic "disguise", with the 
help of the correspondence between logics and their algebraic counterparts, see e.g. 
Andr6ka et al. (1994d), Blok and Pigozzi (1989), chapters 3.4, 5.6 of Henkin et al. 
(1985) about this connection in general. In case of logics with a binary modality this 
correspondence can be described as follows. To any such logic Z:, one can associate 
an algebraic similarity type* tc  by considering any n-ary connective of ~3 as an 
n-ary function symbol of tL. In this way a formula of Z: containing propositional 
variables, say, P3, p25 can be considered as a term of type tL having (algebraic) 

variables P3, P25. For any set T of formulas of Z:, let A T def A T = ( z:,f)Y~tL be the 

formula-algebra** of T i n / : ,  that is, A T de/ {(~)T " ~ E F~}, where (qO)T is 
the congruence class {r E Fc  : T Fz: (~ ~ ~)}. Then the algebraic counterpart 
AIg(s of Z: is the following class: 

AIg(L) aej {A~ : T c_ Fc}.  

Now for each formula T of Z:, 

Fz: ~ ,-'t-->, AIg(s J= (~ = 1) 

holds, that is, ~ is a validity (theorem) of Z: iff ~ (as a term) is identically 1 in each 
algebra of AIg(Z:). As a consequence we obtain the following fact: 

Fact  1. A logic Z: is decidable iff its algebraic counterpart Alg(Z:) has a decid- 
able equational theory, that is, the set 

{(7-, o') " 7", ~z are terms and AIg(s ~ (7" = o')} 

is decidable. 

2. The weakest undecidability theorem 

In this section we state and prove our results only in their weakest forms. The 
reason for this is that we want to stress the crucial points and ideas of the proofs. 
The statements of Section 3 are slightly stronger, it is also to demonstrate the 
necessary modifications in the proofs. The results in their full strength are stated 

* i.e. a shnilarity type of usual first-order logic, having only function symbols 
** also called Lindenbaum-Tarski algebra 
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in Section 5. Most of the techniques on which the proof of Theorem 1 is based, 
are well known for the specialists. Our main contribution is a translation method 
for turning quasiequations* to equations, which works not only in discriminator 
varieties. 

A logic s with a binary modality is called associative iff axiom (A) below is 
among its axioms. 

(A) ((p0op~)op2),--*(:00O~lOp2)). 

Obviously, axiom (A) holds in every square frame. 

THEOREM 1. 
1. The minimal associative logic with a binary modality is undecidable. 
2. The minimal normal associative logic with a binary modality is undecidable. 
3. Any square extension of the minimal associative logic with a binary modality 

is undecidable. 

First, we give the algebraic counterparts of the logics in the theorem and then 
prove that these classes all have undecidable equational theories. 

The algebraic counterpart of the minimal associative logic with a binary modali- 
ty is the class BSG of all Boolean-ordered semigroups, defined as follows. Let tBSG 
be the first-order similarity type (i.e. language) consisting of the Boolean operation 
symbols and a binary operation symbol "o". An algebra A= (A, A, V, - ,  0, 1, o) 
of type tBso is called a Boolean-orderedsemigroup iff (1)-(3) below hold for A: 

(1) (A, A, V, - , 0 ,  1) is a Boolean algebra; 
(2) (A, o) is a semigroup (i.e., "o" is associative); 
(3) "o" distributes over "V", that is, 

A #  (x V # )  o z = (xo  z) V (y o z) and 
AI=  ~ o (x v v) = (z o x) v (z o y). 

Similarly, the algebraic counterpart of the minimal normal associative logic 
with a binary modality is the class of all normal members of BSG, i.e., those 
Boolean-ordered semigroups which satisfy the equations 0 o x = x o 0 = 0. 

A set-BSG is defined to be a Boolean-ordered semigroup such that it is a 
Boolean algebra consisting of some subsets of U x U for some set U, together with 
"o" as the usual composition of binary relations. Observe that, since 0 denotes the 
empty set in set-BSG's, any set-BSG is normal. Now let s be a square extension of 
the minimal associative logic with a binary modality. Then the algebraic counterpart 
AIg(s of s is such that 

(a) the similarity type of AIQ(s includes tBSG; 

* A quasiequat ion is a formula of  form ( e l & . .  �9 &e,~) =~ e0, where  e0, e t , . . . ,  e,, are equations. 
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(b) the tBse-reduct of each algebra in AIg(/~) is a Boolean-ordered semigroup; 
(c) any set-BSG is embeddable into the tBsc-reduct of some algebra in AIg(E). 

We note that BSG and the class of normal BSG's are classes satisfying condi- 
tions (a)-(c) above. Thus it is enough to prove item 3 of Theorem 1. 

Proof of Theorem 1, item 3. Let Z: be an arbitrary square extension of the minimal 
associative logic with a binary modality. We will prove that the equational theory 
of Alg (z:) is undecidable. The proof is based on the fact that the halting problem of 
Turing machines can be "coded by the behaviour of equations" in AIg(s There 
are three basic "building blocks" of this "coding". In this first proof some of the 
blocks contain simple or well-known statements. We include them here in order to 
be able to illustrate later how the more complicated proofs are built of these kinds 
of blocks. 

Let Queq(o) denote the set of all quasiequations of the language of semi- 
groups (using o for the semigroup operation) and let SG denote the class of all 
semigroups. 

[First block: By a well-known result of Post (cf. e.g. Davis (1977)), the halting 
problem of Turing machines is equivalent to the word problem of semigroups. That 
is, for every Turing machine T and possible input i there is some quasiequation 
qT,i E Queq(o) such that 

T halts with input i -' .', SG ~ qT,i. 

This proves the following statement. 

CLAIM 1.1 (Post's theorem) The quasiequational theory of semigroups (i.e. the 
set {q E Queq(o) : SG ~ q}) is undecidable. 

[ Second block: ] By definition, the o-reduct of any Boolean-ordered semigroup 
is a semigroup. Thus, by conditions (a), (b) on AIg(E), for any q E Queq(o), 
if SG ~ q then AIg(/:) ~ q also holds.* Since we are interested in deciding 
equations, we have to "translate" quasiequations to equations in a way which 
preserves "validity in AIg(Z:)". Here we note that for certain "nice" classes of 
algebras (for discriminator varieties, cf. e.g. Burris and Sankappanavar (1981)) 
one can always translate any quasiequation q to an equation e(q) in a "validity 
preserving" way.** Though AIg (s is not necessarily a discriminator variety in this 
case, there is some recursive translation, which works at least for quasiequations 
of Queq(o), that is, SG [= q ~ AIg(Z:) ~ e(q) holds. 

Namely, let the unary term c(x) of type tBSG be defined by 

C(X) def = x V ( l o x )  V ( x o l ) V ( l o x o l ) .  

* This idea was known to Tarski already around 1950. 
** This method for proving undecidability of discriminator varieties was also well known a long 

time ago, cf. e.g. Pixley (1971). 
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For any quasiequation q e Queq(o) of form 

[(TX = 0"1)~.. .SZ.(Tm = O'm) ] :=k (T O -~- 0"0) 

an equation e(q) of type tBso is defined as follows. 

e(q) clef 
= TO e 0"0 ~ C((T1 G 0"1) V " '  V (7" m e O'm)), 

where ~3 denotes symmetric difference. 
First, assume AIg(s ~ e(q) for some q E Queq(o), that is, there is some 

AE Alfl(s and aE ~A such that A~= e(q)[a]. Using the o-reduct of A, we construct 

a semigroup B and an evaluation a ~ E ~B such that B ~ q[a~]. Let 7 ae~ (71 | (q) V 

�9 .. V (~-m �9 am), and let B ~  f (B, o B) be the following algebra: 

B de=f {x V c(r)A[a] �9 x E A} 

clef X o B y = (X 0 A y) V c('r)A[a], 

for any x ,y  E B. 
Then it is easy to check that x H x V c(-r)a[a] is a o-homomorphism from the 

o-reduct of A onto B. Thus B is a semigroup. Also, it can be shown that 

B # (~o # qo)[a'] and B ~= (Tk = qk)[a'] (k = 1 , . . . , r n ) ,  

where a' &f ( . . . ,  aj V c(T)A[a],.. .)jew. Thus BV= q[a'], proving the following 
claim. 

CLAIM 1.2. For any q E Queq(o), 

SG~=q ~ AIg(L)~=e(q). 

[Third  block: ]It is left to prove that"AIg(E) # e(q) ~ SG ~= q". Assume that 
S ~  q for some semigroup S. However, this semigroup S =  (S, .) can be embedded 
into the o-reduct of some Boolean-ordered semigroup in the following way. 

Let e ~ S be a new element and let us define a new semigroup S + = (S +, .) 

b y S  + ~ S U { e }  and by p o s t u l a t i n g a . e  = e . a  = a f o r a l l a  E S + . L e t  

Cs ~f  {{(b, b.  a) : b E S +} : a E S+}, and let Cs clef (Cs, o), where "o" is 
the usual composition of relations. Then the following two statements are easy to 
prove. 

- Cs is a semigroup which embeds S (this is the well-known Cayley represen- 
tation of S). 

- Let B denote the Boolean algebra of all subsets of S + • S + expanded with 
relation composition as "o". Then BE sot-BSG and Cs can be embedded into 
the o-reduct of B. 
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Thus we have the embeddings S ~ Cs ~ B E set-BSG. Therefore S[r q implies 
B ~  q and, since any set-BSG is normal, B ~  c(0) = 0. Then an easy computation 
shows that B~: e(q). Now, by condition (c) on AIg(/2), B can be embedded into the 
tBSG-reduct of some algebra A in AIg(/2). Therefore Ag: e(q) also holds, proving 
the following claim. 

CLAIM 1.3. For any q E Queq(o), 

AIg(/2) # e(q) ~ SG I=q. 

Now, the undecidability proof can be built of the three blocks, that is, of 
Claims 1.1, 1.2 and 1.3. If one could decide the equational theory of AIg(s ) then 
that decision procedure would also solve the halting problem of Turing machines. 
But the latter is well known to be unsolvable, completing the proof. II 

3. More undecidable logics 

In the previous section we showed that the minimal associative logic with a binary 
modality is "hereditarily" undecidable in some sense. The question naturally arises 
whether there are any more undecidable extensions? Certainly, there are some 
extensions which are decidable, any inconsistent logic or logics including the 
axiom (P0 o Pl) ~ (P0 Apl) are trivial examples. 

Theorem 2 below is a strengthening of Theorem 1. It states the undecidability 
of more logics. We present it as a separate theorem because we want to make clear, 
which part of the above proof must be modified. Theorem 3 treats a parallel line, 
namely logics with an associative and commutative "o". For stronger results in 
both directions see Section 5 (see also Andr6ka et al. (1994c)). Finally, Theorem 4 
states the undecidability of some non-associative logics, the proofs and stronger 
results can be found in N6meti et al. (1995). 

A logic/2 is called an unboundedfinite-square extension of the minimal logic 
with a binary modality iff the o-fragment of/2 is valid in an arbitrarily large finite 
square frame (i.e., for every n E a~ there is some set U with [U I > n such that 
the o-fragment of/2 is valid in a square frame with base set U). We note that the 
class of unbounded finite-square extensions is strictly bigger than that of square 
extensions, see the Remark after the proof of Theorem 2 below. 

THEOREM 2. Any unbounded finite-square extension of the minimal associative 
logic with a binary modality is undecidable. 

Proof of Theorem 2. let/2 be an arbitrary unbounded finite-square extension of 
the minimal associative logic with a binary modality. Then the algebraic counterpart 
AIg(/2) of Z; is such that 

(a) the similarity type of AI9(/2 ) includes tBSG; 
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(b) the tBsc-reduct of each algebra in AIg(s is a Boolean-ordered semigroup; 
(c) any finite (l) set-BSG is embeddable into the tBse-reduct of some algebra in 

AIg(s 
I First block: I Before formalizing the particular refinement of the halting prob- 

lem we use here, let us fix some terminology. By a Turing machine (Tm for short) 
we understand a deterministic Turing machine, taking natural numbers as inputs. 
A configuration of T is a triple describing the tape-contents, finite automaton-state 
and head position of T at a certain time instance. A computation of T is a sequence 
of "subsequent" configurations, in the usual sense. By T being deterministic we 
mean that for any input x there is a unique computation of T. We will say that 
Turing machine T terminates, diverges, loops, etc. with input x if it does so in the 
usual sense. We say that the computation of T with input x is cyclic iff there is a 
configuration (of T) which recurs throughout the computation of T. 

Note that if T terminates then we consider this terminating computation as 
cyclic, namely the halting configuration is the recurrent configuration. If T diverges 
then the diverging computation can be either cyclic or noncyclic. For more detail 
about Tm's see e.g. Davis (1977), Rogers (1967). 

The following lemma differs from saying that the halting problem of Turing 
machines is undecidable, it says that the terminating and nonterminating cyclic 
Tm's are recursively inseparable. 

LEMMA 1. Let R be a set of pairs (T, x), where T is a Tm and x E w (i.e. 
x is a possible input for T). Assume that for any Tm T and x E w, conditions (i-ii) 
below hold. 

(i) I f T  terminates for x then (T, x) E R. 
(ii) I f  the computation o f t  with input x is cyclic and diverges then (T, x) ~ R. 

Then R is undecidable. 
Proof of Lemma I The proof goes by a standard diagonalization argument, see 

e.g. the proof of Theorem XII(c) on p. 94 of Rogers (1967). I 

Let FSG denote the class of all finite semigroups. As a special case of the 
results in Gurevich and Lewis (1984), Lemma 1 above yields the following state- 
ment concerning semigroups. 

CLAIM 2.1. Let Q be a set such that 

{q E Queq(o) : S G ~ q }  c Q c_ {q E Queq(o) : F S G ~ q } .  

Then Q is undecidable. 

I Second block: I This block of the proof of Theorem 2 is the same as in case of 
square extensions (cf. Theorem 1). 
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[Third block: 1 Now, if we assume S~= q for some finite semigroup S, then, 
by having the embeddings S ~ Cs ~ B E "finite set-BSG", condition (c) on 
AIg(s ensures that"AIg(s ~ e(q) ~ FSG # q". 

Now we can put together the three blocks as follows. Let Q de_f {q E Queq(o) : 
AIg(s ~ e(q)}. By the second and the third blocks, 

{q E Queq(o) : SG ~ q} c_ Q c_ {q E Queq(o) : FSG ~ q}. 

Thus, by the first block (Claim 2.1), Q cannot be decidable. Thus the equational 
theory of AIg(s is also undecidable, completing the proof of Theorem 2. | 

Remark2.1. We show that there are strictly more unbounded finite-square 
extensions than square extensions. We give an equation which holds in every 
finite BSG but fails in some infinite one. 

Consider the following quasiequation q E Queq(o): 

[(x =  ox= xo ) (y=eoy=yo ) (z  = e o  z =  z o e )  

(v = e o  v = v o e) = o (x  o y = 

, (xoz=xov)] ( z = v )  

It is easy to construct an infinite semigroup in which q fails. We claim that q holds in 
every finite semigroup. Indeed, assume that the first five equations of the premiss of 
q hold in some finite semigroup S. Since S is finite, the subsemigroup of S generated 
by x, y, z, v and e is finite too, thus it is a (finite) monoid with unit e. But in every 
finite monoid, if an element x has a right-inverse then (x.  z = x .  v =:~ z = v) 
holds. Indeed, if x has a right-inverse then there is some n E w with x ~ = 1, thus 
Z =  I . Z = X n . z m x n . v m v .  

Now we claim that the "equational translation" e(q) of q (see the proof of The- 
orem 1) gives the desired equation, that is, an equation separating "finite BSG" 
from BSG. Indeed, by the proof of Theorem 2 above, Claims 1.2 and 1.3 above 
also hold in the following forms: 

1. FSG # q ==~ "finite BSG" # e(q). 
2. BSG ~ e(q) '.- SG # q. 

Moreover, the above example q separating FSG from SG (and its translation e(q) 
separating "finite BSG" from BSG) can be improved the following way. There are 
infinitely many quasivarieties between FSG and SG. Similarly, there are infinitely 
many varieties between "finite BSG" and BSG. Thus, there are infinitely many 
(in fact, continuum many) logics to which Theorem 2 applies but Theorem 1 does 
not. !1 

There are lots of logics which are certainly missing from the class of undecidable 
logics discussed so far, namely those logics which take that kind of restrictions on 
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"o" which are not valid in arbitrarily large square frames. E.g., such logics are the 
commutative ones, that is, which contain the axiom 

(p0 o pl) (pl o p0). 

THEOREM 3. The minimal associative and commutative logic with a binary 
modality is undecidable. 

Proof of Theorem 3. The algebraic counterpart of this logic is the class of 
commutative Boolean-orderedsemigroups, i.e., those members of BSG where "o" 
is commutative. It is certainly not true that every semigroup, or even every finite 
semigroup is embeddable into the o-fragment of such an algebra. Thus we have to 
look for semigroups "elsewhere" in the algebras. As it is proved in Andr6ka et al. 
(1994c), one can "associate" a semigroup to each Boolean-ordered semigroup in 
such a way that 

- the universe of the semigroup is equationally definable in BSG; 
- the semigroup-operation is term definable in tBSG; 
- there is a commutative Boolean-ordered semigroup such that every finite 

semigroup is embeddable to the semigroup "associated" to this particular 
algebra. 

With the help of these "associated" semigroups it is proved in Andr6ka et al. 
(1994c) that for any q E Queq(o) there is some quasiequation q" in the language 
including "A", "V" and "o" such that 

$G ~= q ~ commutative BSG J== e(q ~ ~ FSG ~ q, 

proving, by the usual pattern, that the equational theory of commutative BSG's is 
undecidable. | 

So far we have seen that associativity yields undecidability of many logics. 
Now we discuss an other class of undecidable logics, namely Euclidean logics (see 
the definition below). First we extend the language with one constant "Id" and 
two binary connectives ">", ",~" which will be the conjugates of "o". That is, a 
frame for a logic with a binary conjugated modality is of form (W, C, E>, where 
C _C W • W x W, E C_ W, and the new clauses in the truth definition are 

w 11-(r162 iff (3u, v) [C(v, u, w) and u I I - ~ a n d v  M-C] 
w II- < r iff v) v) and u II- v and v II- r 
wM-Id iff E(w). 

Such a flame is called totally symmetric iff the following formulas hold in it: 
(po > Id) ~ po and 
po --' (po o po ). 

Of course, the former theorems extend for logics with a binary conjugated 
modality, since already the o-fragments of the logics in question are undecidable. 

A logic/:  with a binary conjugated modality is called Euclidean iff Z: contains 
the following axioms: 



DECIDABLE AND UNDECIDABLE LOGICS WITH A BINARY MGDALITY 201 

(Eucl) ((Po ~" pl) o p2) --~ (Po t> (Pl o P2)) 
(Unit) (Po o Id) ~ Po and ( Id o Po ) ~ Po. 

THEOREM 4. 
1. The minimal Euclidean logic with a binary conjugated modality is undecidable. 
2. Any extension of the minimal commutative Euclidean logic with a binary con- 

jugated modality whose (% t>, <, Id)-fragment* is valid in all totally symmetric 
frames is undecidable. 

The statements are proved in N6meti et aL (1995) (see also Simon and Kurucz 
(1993)) by a method extending the one we discussed so far. Among others, they 
use results from the papers Andr6ka et al. (1994a, 1994b). 

4. Decidable logics 

So far we have seen that many extensions of the minimal associative logic with 
a binary modality are undecidable. What can we say about the sublogics? In 
this section we discuss some possible directions in which one can find decidable 
sublogics. 

First consider the language including the Booleans, o , and a unary 
connective ..... . We call a logic L of this language an Arrow Logic iff/~ is a normal 
logic with binary modality "o" and (the dual of) ..... also satisfies the corresponding 
(K) and (Nec) (cf. van Benthem (1994), Venema (1992)). Let A/~min denote the 
minimal Arrow Logic. It is again a consequence of the results of J6nsson and Tarski 
(1948) that A/~min is strongly sound and complete w.r.t, the class of Kripke-frames 
(called arrow frames) (IV, C , R , E / ,  where C _C W • W • W interprets "o", 
R C W • W interprets ..... , and E C_ W interprets "/d". That is, all possible 
choices of a ternary C, a binary R and a unary E are allowed as accessibility 
relations in arrow frames for A/~min. 

Stronger Arrow Logics can be obtained by adding new axioms, i.e., by restricting 
the class of arrow frames. For example, consider the axiom 

V) 

This axiom ensures that the accessibility relation R is actually a function R "  W 
W in all frames. So if we add this axiom to AZ2min then we obtain a stronger Arrow 
Logic in which all arrow frames satisfy that R"  W ~ W is a function. 

Below we list seven potential axioms (AL1)-(AL7) from the paper van Benthem 
(1994), together with the corresponding frame conditions. 

(ALl) -~po" ~ (-~po) ~ iff Vx3y R(x,  y) 
(AL2) (-~po) V ---* -~po" iff Vx, y, z [R(x, y) and R(x,  z) --+ y = z] 

* i.e. those theorems of Z~ which include only "o", "~,", "<", "IaV and the Booleans. 



202 A, GNES KURUCZ ET AL. 

(AL3) P0 ~ ~ P0 iff Vx3y[I:t(x, y) and R(y, x)] and 
andVx, y , z  [R(x,y)and R(y, z) ~ x = z] 

(AL4) (poopl)'~---*plVoPo ~ iff Vx, y , z , x '  [C(x,y,z)  andR(x ,x ' )  ---. 
---* 3y',z'  (R(y ,y ' )and R ( z , z ' ) ~  C(x',z ' ,y'))] 

(AL5) poo~(po%Pl) ~ -~Pl iff Vx, y , z [C(x , y , z )  ~ 3y ' (R(y ,y ' )  and 
and C(z,y' ,x))] 

(AL6) Id--~ Id ~ iff Vx [E(x) ---. By (R(z, y) and E(y))] 
(AL7) Id o Po -~ Po iff Vx, y, z [E(y) and C(x, y, z) ---+ x = z]. 

We note that the minimal associative Arrow Logic AEmin + (A) as well as any 
Arrow Logic which is obtained by adding some of the above axioms (AL 1)-(AL7) 
to .AEmin %- (A) is undecidable by the third statement of Theorem 1. However, we 
can weaken associativity in the following way: 
( A - )  ((Pl AId) o T) o T ~ (Pl A ./d) o (7- o T), 
where T abbreviates the formula "P0 ~ p0". (This weakening of associativity was 
investigated first by Maddux (1978) in connection with Relation Algebras.) 

An Arrow Logic 12 is called weakly associative iff (A-) is an axiom of E. 
Since (A-) is a consequence of (A), associative Arrow Logics are also weakly 
associative. 

Now let AE1-5 de.~_f ~'~min %- {(ALl) , . . . ,  (AL5)} and let ,A/~I_ 7 def ,A/~I_ 5 %- 

{(AL6),(AL7)}. 

THEOREM 5. 
1. ,A/~I_ 5 is decidable ,  

2. f[/~l-5 %- ( A - )  is decidable .  

3..AE1-7 %- (A-) is decidable. 

It is proved in N6meti (1987) (cf. also Marx et al. (1995), Mikul~is et al. (1995) 
that the equational theories of the algebraic counterparts of the logics in Theorem 5 
are decidable by showing that these classes all have the finite algebra property. 
This property says that if an equation fails in an algebra of the class in question 
then it must already fail in a finite algebra. 

Now let us try to increase the expressive power of Arrow Logics by adding new 
logical connectives, like the difference operator "D", universal modality "(u)", 
the "stratified" or "graded" modalities (n-times) (n C ~),* and the Kleene-star 
"* ". The truth definitions of these new connectives in a frame (W, C , . . . )  are as 
follows. 

w l l - D ~  iff ( ~ v E W ) [ w ~ v a n d v } l - ~ ] ,  
w I[- (n-times)~ iff {v E W : v [[- ~} has at least n elements. 
w [[- ~* iff w can be "C-decomposed" into some finite sequence of 
worlds satisfying ~. 

�9 See e.g. Sain (1984, 1988), Gargov et al. (1987), Ohlbach (1993), van der Hoek (1992) and the 
references therein. 
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The universalmodality (u) is defined by (u)qa ae_f ~ V D~.  Sain (1988) pointed out 
that for n < 3, "(n-times)" is expressible from "D"  (but not vica versa). 

THEOREM 6. Any logic in Theorem 5 remains decidable i f  we add " D", or "(u) ", 
or "(n-times)", or "* " (or all o f  them) to it. 

The statements concerning "D"  and "(n-times)" are proved in Andr6ka et al. 
(1994e), see also Marx et al. (1995). For the statements including Kleene-star 
but without (A- )  see van Benthem (1994), for the weakly associative cases see 
Mikul~is et al. (1995). 

The significance of Theorem 6 is that the logic ,AZ;times, which is obtained 
from ,A/~1-7 + (A-)  by adding connectives "D"  and "(n-times)" (n E w), is 
very expressive. It is decidable, but it is more expressive than the undecidable 
associative logic As + (A) (the logical equivalent of Relation Algebras), since 
already "(4-times)" is not expressible in the latter. 

Finally we discuss another direction, in which one can obtain an associative 
but decidable logic, namely by omitting axiom (K) (for connective "o" ). Recall 
that now our language includes the Booleans and a binary "o" (and perhaps other 
connectives as well). We say that s is a classical logic with a binary modality iff 
/~ contains (pt) as axiom and the set of validities of/~ is closed under substitution, 
modus ponens and replacement of equivalents.* 

THEOREM 7. The minimal associative classical logic with a binary modality is 
decidable. 

This theorem is a consequence of a general result of Pigozzi (1974), saying that 
the "join" of two disjoint decidable equational theories is decidable. 

5. Some more advanced results 

In Sections 2-3 above we outlined a proof method for undecidability results. The 
emphasis was on the method itself, and not on the results. One of the key points was 
a "sub-method" for avoiding the assumption that our algebras have a discriminator 
term (which on the logic side amounts to expressibility of a universal modality), and 
still be able to code quasiequations by equations. One of the reasons for presenting 
the method in Sections 2-3 was that this method can be pushed further and yields 
stronger results. Below we illustrate this by stating a few results obtained this 
way. Several (but not all) results below will have algebraic conditions in their 
formulations; we hope that having studied the proof in Section 2, the reader will 
be prepared for this. 

Recall that a Boolean-ordered semigroup A is called normal if z o 0 = 0 = 0 o x 
is valid in A. 

* Such logics are called "classical" in the usual mono-modal setting, cf. Segerberg (1971). 
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A semigroup S= (S, .) is called eventually zero iff there is some n E w with 

S ~ ~Z(VX(X'Z .= Z ' X  ~. Z ) ~ V X  1 . . . x n ( x l ' x 2 " . . .  "Xn ~'Z)). 

We note that this is a quite strong property, and that it is not true that every finite 
semigroup would be embeddable into an eventually zero semigroup. 

Items (1, 2) of Theorem 8 below are joint results with Hajnal Andr6ka and 
Steven Givant. 

THEOREM 8. Let ~ be a logic with a binary modality "o". Assume "o" is asso- 
ciative. Then any one of  conditions (1-6) below is sufficient for undecidability of  
L. 

1. ~ is a logic with a binary conjugated modality. Further, there is a normal 
infinite AE AIg(s such that the reduct (A, o, t,, ,~) of  A contains a subalgebra 
whose universe B is an anti-chain in A (that is, x A y = 0 if  x, y E B are 
different). 

2. The same as 1 but with an infinite collection Ai and (not necessarily infinite) 
Bi (i E w) in place o f  A and B such that i f  i < j E w then (Bi, o) ~ (Bj ,  o). 

3. Every finite group is embeddable into the o-reduct o f  some normal member o f  
AIg(C). 

4. Every finite two-generated eventually zero semigroup is embeddable into the 
o-reduct o f  some normal member of AIg (s 

5. To each n E ~, there are nontrivial finite groups G1,. . .  ,Gn and a normal 

AE AIg(s such that Gd--efG1 X . . .  XG n is a subalgebra o f (A ,  o) and G is an 
anti-chain in A. 

Next we state the solutions of some open problems from Jipsen (1992) (see 
Andr6ka et al. (1994c), N6meti et al. (1995)). For this, we use the notation of 
Jipsen (1992) without recalling it. 

COROLLARY 8.1. All the classes listed in Problem 3.61 of Jipsen (1992) have 
undecidable equational theories. Namely, EUR, ERM, I ERM, GERM, RM, I RM, 
CRM, ICRM, ARM, SERM and ISERM; further EUR, IEUR, SEUR, ISEUR, 
C EU R, I CEU R have undecidable equational theories. 

The minimal Euclidean logic was introduced above Theorem 4. The class RA of 
relation algebras is defined e.g. in Henkin et al. (1985), J6nsson and Tarski (1948), 
Venema (1992), Andr6ka et al. (1994b). Theorem 9 below is a generalization of 
the corresponding theorem for RA, stated in Andr6ka et al. (1994a, 1994b). 

THEOREM 9. Let s be an extension o f  minimal Euclidean logic. Assume there is 
a simple AE AIg(/:) M RA in which there are infinitely many elements below Id. 
Then s is undecidable. 
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