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Abstract. We analyse the role of the modal axiom corresponding to the
first-order formula “∃y (x = y)” in axiomatisations of two-dimensional
propositional modal logics.

One of the several possible connections between propositional multi-modal
logics and classical first-order logic is to consider finite variable fragments of the
latter as ‘multi-dimensional’ modal formalisms: First-order variable-assignment
tuples are regarded as possible worlds in Kripke frames, and each first-order
quantification ∃vi and ∀vi as ‘coordinate-wise’ modal operators 3i and 2i in
these frames. This view is implicit in the algebraisation of finite variable frag-
ments using finite dimensional cylindric algebras [6], and is made explicit in [15,
12].

Here we look at axiomatisation questions for the two-dimensional case from
this modal perspective. (For basic notions in modal logic and its Kripke se-
mantics, consult e.g. [2, 3].) We consider the propositional multi-modal language
MLδ2 having the usual Boolean operators, unary modalities 30 and 31 (and
their duals 20, 21), and a constant δ:

MLδ2 : p | ¬ϕ | ϕ ∨ ψ | 30ϕ | 31ϕ | δ

Formulas of this language can be embedded into the two-variable fragment of
first-order logic by mapping propositional variables to binary atoms P (v0, v1)
(with this fixed order of the two available variables), diamonds 3i to quantifica-
tion ∃vi, and the ‘diagonal’ constant δ to the equality atom v0 = v1. Semantically,
we look at first-order models as multimodal Kripke frames (fitting to the above
language) of the form

〈U × U,≡0,≡1, Id〉, where, for all u0, u1, v0, v1 ∈ U,
〈u0, u1〉≡0〈v0, v1〉 iff u1 = v1,

〈u0, u1〉≡1〈v0, v1〉 iff u0 = v0, and
Id = {〈u, u〉 : u ∈ U}.

We call frames of this kind square frames. The above embedding is validity-
preserving in the sense that a modalMLδ2-formula ϕ is valid in all square frames
iff its translation ϕ† is a first-order validity.
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In the algebraic setting, the modal logic of square-frames corresponds to the
equational theory of the variety RCA2 of 2-dimensional representable cylindric
algebras. The equational theory of RCA2 is well-known to be finitely axioma-
tisable [6]. By turning this equational axiomatisation to modal MLδ2-formulas,
we obtain a finite axiomatisation of the modal logic of square frames [15]. In
order to ‘deconstruct’ this axiomatisation and to try to analyse which axiom is
responsible for which properties of the modal logic of square frames, below we
list these axioms divided into two groups:

(i) Unimodal properties describing individual modal operators, for i = 0, 1:

2ip→ p 2ip→ 2i2ip 3ip→ 2i3ip (1)

These are the (Sahlqvist) axioms of the well-known modal logic S5, saying
that each ≡i is an equivalence relation.

(ii) Multimodal, ‘dimension-connecting’ properties, describing the interactions
between the two diamonds, and between the diamonds and the diagonal
constant:

3031p↔ 3130p (2)
30δ ∧31δ (3)(
30(δ ∧ p)→ 20(δ → p)

)
∧

(
31(δ ∧ p)→ 21(δ → p)

)
(4)

δ ∧30(¬p ∧31p)→ 31(¬δ ∧30p) (5)
δ ∧31(¬p ∧30p)→ 30(¬δ ∧31p) (6)

These axioms are also Sahlqvist formulas, with easily computable first-order
correspondents: Axiom (2) says that ≡0 and ≡1 commute, (3) says that at
each ‘horizontal’ and ‘vertical’ coordinate, there is at least one ‘diagonal’
point, while (4) says that there is at most one such. Finally, (5) is a kind
of generalisation of (2) when we start from a ‘diagonal’ point: It says that
if we start with a ≡0-step, then move on to a different point by a ≡1-step,
then we can always complete the same journey by taking first a ≡1-step
to a ‘non-diagonal’ point, followed by a ≡0-step. (And (6) says the same
about starting with a ≡1-step, and then taking a ≡0 one.) Note that the
axiomatisation given in [6] contains slightly complicated forms of (5) and
(6). As it is shown by Venema [15], on the basis of (1), (2) and (4), the
‘Henkin-axioms’ are equivalent to (5) and (6).

One of the motivations in the study of so-called two-dimensional modal logics
is to understand how much influence each of the (i)- and (ii)-like properties has
on the resulting logics. Below we consider Kripke structures where

– the set of possible worlds is still a full Cartesian product of two sets, and the
relations between the pairs of points still ‘act coordinate-wise’ (so at least
(2), but possibly further properties in (ii) still hold),

– the accessibility relations between the pairs of points are not necessarily
equivalence relations (so (i) might not hold).
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Note that this direction is kind of orthogonal to the one taken by relativised
cylindric algebras [6, 7] and guarded fragments of first-order logic [1], where (i)
is kept unchanged, while generalisations of (ii) are considered.

Let us introduce a ‘product-like’ construction on Kripke frames. This and
similar constructions were first considered by Segerberg [13] and Shehtman [14],
see also [4, 9, 8]. Given unimodal Kripke frames F0 = 〈U0, R0〉 and F1 = 〈U1, R1〉,
their δ-product is the multimodal frame

F0×δF1 = 〈U0 × U1, R̄0, R̄1, Id〉,

where U0 × U1 is the Cartesian product of sets U0 and U1, the binary relations
R̄0 and R̄1 are defined by taking,

〈u0, u1〉 R̄0〈v0, v1〉 iff u1 = v1 and u0R0v0,

〈u0, u1〉 R̄1〈v0, v1〉 iff u0 = v0 and u1R1v1,

and
Id = {〈u, u〉 : u ∈ U0 ∩ U1}.

Observe that if F = 〈U,U×U〉 is an universal frame, then F×δF is a square frame.
Let us introduce some notation for logics of some special classes of δ-product
frames:

K×δK = {ϕ ∈MLδ2 : ϕ is valid in F0×δF1, Fi are arbitrary frames},
K×sq K = {ϕ ∈MLδ2 : ϕ is valid in F×δF, F is an arbitrary frame},
S5×δS5 = {ϕ ∈MLδ2 : ϕ is valid in F0×δF1, Fi are equivalence frames},
S5×sq S5 = {ϕ ∈MLδ2 : ϕ is valid in F×δF, F is an equivalence frame}

= {ϕ ∈MLδ2 : ϕ is valid in F×δF, F is a universal frame}
= {ϕ ∈MLδ2 : ϕ is valid in all square frames}.

Using this notation, the finite axiomatisability of RCA2 can be reformulated as
the following:

Theorem 1. [6] S5×sq S5 is finitely axiomatised by the axioms (1)–(6).

In this note we investigate the particular role of axiom (3) in this axiomati-
sation. To begin with, this axiom is quite strong in the sense that it can ‘force’
the S5-properties (1) in the presence of ‘two-dimensionality’, as the following
surprising statement shows:

Theorem 2. [10, 11] Let L be any canonical modal logic with

K×δK ⊆ L ⊆ S5×sq S5.

Then S5×sq S5 is finitely axiomatisable over L: S5×sq S5 is the smallest modal
logic containing L and axiom (3).
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In particular, as a consequence we obtain that S5×sq S5 =‘S5×δS5 + (3)’.
Here we show that the remaining axioms indeed do axiomatise S5×δS5:

Theorem 3. S5×δ S5 is finitely axiomatised by the axioms (1), (2), (4)–(6).

On the one hand, these axioms are clearly valid in δ-products of equivalence
frames. On the other hand, since (1), (2), and (4)–(6) are all Sahlqvist-formulas,
the modal logic they axiomatise is determined by a first-order definable class of
frames, and so it has the countable frame property. Therefore, it is enough to
show the following:

Lemma 4. Let G = 〈W,R0, R1, D〉 be a countable rooted frame, validating (1),
(2), and (4)–(6). Then G is a p-morphic image of a δ-product F0×δF1 for some
universal frames Fi = 〈Ui, Ui × Ui〉, i = 0, 1.

Proof. It is a step-by-step argument that is a generalisation of Venema’s [15]
proof showing that countable rooted frames validating (1)–(6) are p-morphic
images of square frames.

One way of presenting such an argument is by defining a ‘p-morphism game’
Gω(G) between two players ∀ (male) and ∃ (female) over G. In this game, ∃ con-
structs step-by-step, (special) homomorphisms from larger and larger δ-products
of universal frames to G, and ∀ tries to challenge her by pointing out possible
‘defects’: reasons why her current homomorphism is not an onto p-morphism
yet.

To this end, we call a triple N = 〈UN0 , UN1 , fN 〉 a G-network, if UN0 , UN1 are
nonempty sets, and fN : UN0 × UN1 → W is a function such that the following
hold, for all ui, vi ∈ UNi , i = 0, 1:

(nw1) fN (u0, u1)R0f
N (v0, u1) and fN (u0, u1)R1f

N (u0, v1),
(nw2) fN (u0, u1) ∈ D iff u0 = u1 ∈ UN0 ∩ UN1 , and
(nw3) if there exists w in D with fN (u0, u1)Riw, then u1−i ∈ UNi .

The two players build a countable sequence of G-networks

N0 ⊆ N1 ⊆ · · · ⊆ Nk ⊆ . . . .

(Here Nk ⊆ Nk+1 means that UNk
i ⊆ U

Nk+1
i , i = 0, 1, and fNk ⊆ fNk+1 .) In

round 0, ∀ picks any point r in D if there is such. If not, then just any point in
W . (As R0 and R1 are equivalence relations and R0 ∪ R1 is rooted, any point
in W is a root in G.) ∃ responds with the G-network UN0

0 = {u0}, UN0
1 = {u1}

and fN0(u0, u1) = r, with u0 = u1 if r ∈ D, and u0 6= u1 otherwise.
In round k (0 < k < ω), some sequence N0 ⊆ · · · ⊆ Nk−1 of G-networks has

already been built. ∀ picks

– a pair 〈x, y〉 ∈ UNk−1
0 × UNk−1

1 ,
– a point w ∈W , and
– an index i = 0 or i = 1



A note on axiomatisations of two-dimensional modal logics 5

such that fNk−1(x, y)Riw holds. Let us consider ∃’s possible responses in the
i = 0 case. (The i = 1 case is symmetrical.) She can respond in two ways. If there
is some u ∈ UNk−1

0 with fNk−1(u, y) = w, then she responds with Nk = Nk−1.
Otherwise, she has to respond (if she can) with some G-network Nk ⊇ Nk−1

such that u∗ ∈ UNk
0 and fNk(u∗, y) = w, for some fresh point u∗.

We say that ∃ has a winning strategy in Gω(G) if she can respond in each
round k for k < ω, no matter what moves ∀ take in the rounds. It is not hard to
see that if ∃ has a winning strategy in Gω(G), then G is a p-morphic image of a
a δ-product of universal frames: Consider a play of the game when ∀ eventually
picks all possible pairs and corresponding Ri-connected points in G (since G is
countable and rooted, he can do this). If ∃ uses her strategy, then she succeeds
to construct a countable ascending chain of G-networks whose union gives the
required p-morphism.

We show that if G validates axioms (1), (2), and (4)–(6), then ∃ has a winning
strategy in Gω(G). The case of round 0 is straightforward. Suppose that we are
in round k > 0 and ∀ picks 〈x, y〉, w, and i = 0 as above. We omit the case where
∃’s response is fully determined by the rules of the game, so we may assume that

fNk−1(u, y) 6= w, for all u ∈ UNk−1
0 . (7)

We claim that
w /∈ D (8)

follows. Indeed, if w ∈ D then y ∈ U
Nk−1
0 ∩ UNk−1

1 by (nw3), and therefore
fNk−1(y, y) ∈ D by (nw2). So, by axioms (1) and (4), w = fNk−1(y, y) follows,
contradicting (7).

We let UNk
0 = U

Nk−1
0 ∪ {u∗}, for some fresh point u∗, fNk(u∗, y) = w, and

fNk ⊇ fNk−1 . We consider two cases: either there is no w∗ ∈ D with wR1w
∗, or

there is such a w∗.

Case 1. There is no w∗ ∈ D with wR1w
∗.

Then we let UNk
1 = U

Nk−1
1 . Take some u ∈ U

Nk−1
1 , u 6= y. We need to de-

fine fNk(u∗, u) such that (nw1)–(nw3) hold. We have fNk(x, u)R1f
Nk(x, y)R0w

by (nw1). So by axiom (2), there exists wu such that fNk(x, u)R0wuR1w. As
wuR1w, by axiom (1) there is no v ∈ D with wuR1v, in particular, wu /∈ D.
Therefore, fNk(u∗, u) = wu is a good choice.

Case 2. There exists w∗ ∈ D with wR1w
∗.

Then we let UNk
1 = U

Nk−1
1 ∪ {u∗}. We need to define fNk on the new pairs such

that (nw1)–(nw3) hold. There are several cases (see Fig. 1):

– First, let fNk(u∗, u∗) = w∗.
– Next, take some u ∈ UNk−1

1 , u 6= y.
• Case (a). There is no v ∈ D with fNk(x, u)R0v.

As by (nw1) we have fNk(x, u)R1f
Nk(x, y)R0w, by axiom (2) there exists

wu such that fNk(x, u)R0wuR1w. As fNk(x, u)R0wu, by axiom (1) there
is no v ∈ D with wuR0v, and therefore fNk(u∗, u) = wu /∈ D will do.
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Fig. 1. The subcases in Case 2.

• Case (b). There is v ∈ D with fNk(x, u)R0v.
By (nw3) and (nw2), u ∈ U

Nk−1
0 and fNk(u, u) ∈ D. By (7), we have

fNk(u, y) 6= w. As by (nw1) we also have fNk(u, u)R1f
Nk(u, y)R0w, by

axiom (6) there is wu /∈ D with fNk(u, u)R0wuR1w, and so fNk(u∗, u) =
wu /∈ D will do.

– Finally, take some u ∈ UNk−1
0 .

• Case (c). There is no v ∈ D with fNk(u, y)R1v.
As by (nw1) we have fNk(u, y)R0wR1f

Nk(u∗, u∗), by axiom (2) there is
wu such that fNk(u, y)R1wuR0f

Nk(u∗, u∗). As fNk(u, y)R1wu, by axiom
(1) there is no v ∈ D with wuR1v, and so fNk(u, u∗) = wu /∈ D will do.

• Case (d). There is v ∈ D with fNk(u, y)R1v.
By (nw3) and (nw2), u ∈ UNk−1

1 and fNk(u, u) ∈ D. On the one hand,
we have fNk(u∗, u) 6= fNk(u∗, u∗), as fNk(u∗, u) /∈ D by Case (b) and
(8), while fNk(u∗, u∗) ∈ D by definition. On the other hand, by (nw1)
we have fNk(u, u)R0f

Nk(u∗, u)R1f
Nk(u∗, u∗). So by axiom (5), there is

wu /∈ D with fNk(u, u)R1wuR0f
Nk(u∗, u∗). Thus fNk(u, u∗) = wu /∈ D

will do,

completing the proof of Lemma 4.

The role of (3)-like axioms in two-dimensional logics without the individual
S5-properties is far from clear. Unlike axioms (2) and (4)–(6), axiom (3) does
not hold in K×sq K. In fact, it is not known whether, say, K×sq K is finitely
axiomatisable over K×δK. Also, though a general argument of [5] can be used
to show that both logics are recursively enumerable, no explicit axiomatisations
for them are known. Such axiomatisations should be infinite however: As it is
shown by Kikot [8], neither K×sqK nor K×δK can be axiomatised using finitely
many propositional variables.
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