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The equationally expressible properties of the cylindrifications and the diago-
nals in finite-dimensional representable cylindric algebras can be divided into two
groups:

(i) ‘One-dimensional’ properties describing individual cylindrifications. These
can be fully characterised by finitely many equations saying that each ci, for
i < n, is a normal (ci0 = 0), additive (ci(x+y) = cix+ciy) and complemented
closure operator:

x ≤ cix cicix ≤ cix ci(−cix) ≤ −cix. (1)

(ii) ‘Dimension-connecting’ properties, that is, equations describing the diagonals
and interaction between different cylindrifications and/or diagonals. These
properties are much harder to describe completely, and there are many results
in the literature on their complexity.

The main aim of this chapter is to study generalisations of (i) while keeping (ii) as
unchanged as possible. In other words, we would like to analyse how much of the
complexity of RCAn is due to its ‘many-dimensional’ character and how much of it
to the particular properties of the cylindrifications. Note that this direction is kind
of orthogonal to the one taken by relativised cylindric algebras [15, Section 5.5],
where (i) is kept unchanged, while generalisations of (ii) are considered.

In our investigations we view representable cylindric algebras from the perspec-
tive of multimodal logic. This approach is explained in detail in Venema’s chapter of
this volume and in [35]. In particular, we look at n-dimensional cylindric set alge-
bras as subalgebras of the complex algebra of ‘n-dimensional’ relational structures
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of the form
〈nU,≡i, Id ij〉i,j<n, (2)

where, for all i, j < n, u,v ∈ nU ,

u ≡i v ⇐⇒ uk = vk for all k < n, k 6= i, and
u ∈ Id ij ⇐⇒ ui = uj .

Instead of equations in the algebraic language having operators dij and ci, we use
formulas of the corresponding propositional multimodal language having modal
constants δij and unary diamonds 3i (and their duals 2i), for i, j < n. As the va-
riety RCAn of n-dimensional representable cylindric algebras is generated by cylin-
dric set algebras, equations valid in RCAn correspond to multimodal formulas valid
in all structures described in (2). The above classification of equational properties
now translates to the following classification of modally expressible properties:

(i) Modal formulas saying that each 3i is normal and distributes over ∨, and
axioms of modal logic S5, for each i < n:

2ip→ p 2ip→ 2i2ip 3ip→ 2i3ip. (3)

(ii) Multimodal formulas describing ‘dimension-connecting’ properties of the n-
dimensional structures described in (2).

Our investigations can also be motivated from a purely modal logic point of
view. The n-dimensional relational structures described in (2) are examples of
products of Kripke frames, a notion introduced in [38, 39]. Product frames have
been widely used for modelling interactions between modal operators representing
time, space, knowledge, actions, etc.; see [8, 31] and references therein. One can
also consider this chapter as a demonstration of how cylindric algebraic results and
techniques can be used for studying combinations of modal logics.

1 Special varieties of complex algebras

This chapter is not self-contained in the sense that we use without explicit ref-
erence standard notions and results from basic modal logic; such as p-morphisms
(also known as bounded morphisms or zigzag morphisms), inner substructures (also
known as generated subframes), Sahlqvist formulas and canonicity, and duality be-
tween relational structures and Boolean algebras with operators (BAOs). For no-
tions and statements not defined or proved here, see other chapters of this volume
(like that of Hirsch and Hodkinson, and Venema) or [5, 4, 11].

We begin with introducing some notation and terminology. If x is a point in
a relational structure F then we denote by Fx the smallest inner substructure of F
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containing x. We call Fx a point-generated inner substructure of F. If F = Fx for
some x, then F is called rooted. Rooted structures are important in modal logic, as
in any model over F, the truth-values of modal formulas at x depend only on how
the model behaves at points in Fx.

Apart from the usual operators H , S and P on classes of algebras (see [16,
Ch. 0]) we use the following operators on classes of relational structures of the same
signature:

I C = isomorphic copies of inner substructures of structures in C,
Ip C = isomorphic copies of point-generated inner substructures

of structures in C,
Up C = isomorphic copies of ultraproducts of structures in C.

The (full) complex algebra of a relational structure F is denoted by Cm F. We can
describe properties of F in the corresponding (multi)modal language, having a k-ary
modal 3 for each k + 1-ary relation. Validity of a set Σ of such modal formulas
in a relational structure F (in symbols: F |= Σ) is defined as usual. Formulas
of this modal language can also be considered as terms of an algebraic language,
where each k-ary 3 is regarded as a k-ary function symbol. The starting point
of the duality between modal logic and BAOs is the following property: for every
relational structure F and every modal formula ϕ,

F |= ϕ ⇐⇒ Cm F |= (ϕ = 1). (4)

Given a class C of relational structures of the same signature, we denote by Cm C
the class of complex algebras of structures in C, and by Log(C) the set of all modal
formulas that are valid in every structure in C. We then have the following conse-
quence of (4): for any relational structure F,

F |= Log(C) ⇐⇒ Cm F ∈ HSPCm C. (5)

We are interested in varieties of BAOs generated by complex algebras of (spe-
cial) structures (these are called complex varieties in [11]). The following general
result will be used throughout this chapter:

Theorem 1.1. (Goldblatt [13]) If C is a class of relational structures that is closed
under Up, then SPCm I C is a canonical variety.

Let us have a closer look at the subdirectly irreducible algebras of these varieties.

Lemma 1.2. ([33]) For any class C of relational structures, the subdirectly irre-
ducible members of SPCm I C belong to SCm Ip C.
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Proof. Let A ∈ SPCm I C and let A �
∏
i∈I Ai be a subdirect embedding, for

some Ai ∈ SCm I C, i ∈ I. If A is subdirectly irreducible then there is an i ∈ I
such that A ∼= Ai, and so A is isomorphic to a subalgebra of Cm F for some F ∈ I C.
Then for each point x in F, Fx ∈ Ip I C ⊆ Ip C. It is not hard to show (see e.g.
[11, 3.3]) that Cm F �

∏
x∈F Cm Fx is a (subdirect) embedding. So there exist

subalgebras Bx of Cm Fx such that A �
∏
x∈F Bx is a subdirect embedding as

well. As A is subdirectly irreducible, there is some x in F such that A ∼= Bx, and
so A ∈ SCm Ip C.

Now Theorem 1.1 and Lemma 1.2 imply the following characterisation of vari-
eties generated by certain classes of complex algebras.

Theorem 1.3. ([33]) If C is a class of relational structures that is closed under Up
and Ip , then SPCm C = HSPCm C is a canonical variety.

We can also have a ‘dual’ structural characterisation of subdirectly irreducible
algebras of these varieties. We denote by Uf A the ultrafilter frame of a BAO A,
and by Ue F = Uf CmF the ultrafilter extension of a relational structure F.

Theorem 1.4. Let C be a class of relational structures that is closed under Up.
Then for every subdirectly irreducible algebra A,

A ∈ SPCm C ⇐⇒ A ∈ SCm C ⇐⇒ Uf A is a p-morphic image of some G ∈ C.

Proof. ⇐: By Jónsson and Tarski’s [26] theorem, A is embeddable into Cm UfA.
And by duality, Cm UfA is embeddable into Cm G ∈ Cm C.
⇒: If A ∈ SPCm C then there is a subdirect embedding A �

∏
i∈I Ai, for

some Ai ∈ SCm C, i ∈ I. As A is subdirectly irreducible, there is an i ∈ I such
that A ∼= Ai, that is, A is isomorphic to a subalgebra of Cm F for some F ∈ C. By
duality, Uf A is a p-morphic image of Ue F. As Ue F is a p-morphic image of an
ultrapower of F (see [7, 2, 3]) and C is closed under taking ultraproducts, the proof
is completed.

Remark 1.5. We can have a similar characterisation of arbitrary, not necessarily
subdirectly irreducible, algebras in these kinds of varieties. If C is closed under Up
then

A ∈ SPCm C ⇐⇒ Uf A is a p-morphic image of ·
⋃
i∈I Gi for some Gi ∈ C, (6)

where ·
⋃
i∈I Gi is the disjoint union of Gi, for i ∈ I. The proof of (6) is similar to

that of Theorem 1.4, but we need to use some additional properties of the various
operators such as:

•
∏
i∈I Cm Gi

∼= Cm ·
⋃
i∈I Gi.
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• [12] An ultrapower of a disjoint union of structures is a p-morphic image of
a disjoint union of some ultraproducts formed from the same structures.

An example of a class C of relational structures that is closed under taking
ultraproducts and point-generated inner substructures is the class of n-dimensional
full cylindric set algebra atom structures (described in (2)). Disjoint unions of such
structures are atom structures of generalised cylindric set algebras. By duality, a
surjective p-morphism from such a structure onto Uf A corresponds to a complete
representation (see Hirsch and Hodkinson’s chapter of this volume) of the canonical
embedding algebra Cm UfA of A. So, as a special case of (6) one can obtain the
following result of Monk. For every cylindric-type algebra A,

A ∈ RCAn ⇐⇒ Cm UfA has a complete representation.

Corollary 1.6. Let C be a class of relational structures that is closed under Up
and Ip . Then for every rooted structure F,

F |= Log(C) ⇐⇒ Ue F is a p-morphic image of some G ∈ C.

Proof. By (5) and Theorem 1.3,

F |= Log(C) ⇐⇒ Cm F ∈ SPCm C.

As the complex algebra of a rooted structure is subdirectly irreducible [11], the
statement follows from Theorem 1.4.

As the ultrafilter extension of a finite relational structure is isomorphic to the
structure itself, we obtain:

Corollary 1.7. Let C be a class of relational structures that is closed under Up
and Ip . Then for every rooted finite structure F,

F |= Log(C) ⇐⇒ F is a p-morphic image of some G ∈ C.

2 The diagonal-free case

We would like to apply the general results of the previous section to special classes
of ‘n-dimensional’ relational structures. To this end, for any 0 < n < ω, we define
an n-frame to be a structure of the form 〈W,Ti〉i<n, where W is a non-empty set
and Ti is a binary relation on W , for each i < n. Multimodal formulas matching
n-frames are called n-modal formulas (that is, n-modal formulas are built up from
propositional variables using the Booleans and unary modal operators 3i and 2i,
i < n).

The following notion is a generalisation of atom structures of n-dimensional full
diagonal-free cylindric set algebras (cf. [16, 2.7.38]).
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Definition 2.1. Given 1-frames Fi = 〈Wi, Ri〉, i < n, their product is the n-frame

F0 × · · · × Fn−1 = 〈W0 × · · · ×Wn−1, R̄i〉i<n,

where W0 × · · · × Wn−1 is the Cartesian product of the Wi and for all u,v ∈
W0 × · · · ×Wn−1 and i < n,

uR̄iv iff uiRivi and uj = vj for j 6= i, j < n.

Such n-frames we call n-dimensional product frames.

It is not hard to see that the product operation commutes with taking ultra-
products and point-generated inner substructures:

Proposition 2.2. Let U be an ultrafilter over some index set I, and let Fik be a
1-frame, for i ∈ I, k < n. Then:∏

i∈I
(Fi0 × · · · × Fin−1)/U ∼= (

∏
i∈I

Fi0/U)× · · · × (
∏
i∈I

Fin−1/U).

Proposition 2.3. Let F = F0 × · · · × Fn−1 and x be a point in F. Then:

Fx = Fx0
0 × · · · × F

xn−1

n−1 .

Remark 2.4. Given classes Ci of 1-frames, for i < n, we can define a class C of
n-dimensional product frames by taking

C = C0 × · · · × Cn−1 = {F0 × · · · × Fn−1 : Fi ∈ Ci, i < n}.

As a consequence of Propositions 2.2 and 2.3, we obtain that if each class Ci is
defined by a set of universal formulas in the first-order language having one binary
predicate symbol and possibly equality, then C is closed under taking ultraproducts
and point-generated inner substructures. Here are some examples of this kind:

Cnall = the class of all n-dimensional product frames,
Cntrans = the class of all n-dimensional products of transitive frames,
Cnequiv = the class of all n-dimensional products of equivalence frames,

Cnuniv = the class of all n-dimensional products of universal frames
= the class of all n-dimensional full diagonal-free cylindric

set algebra atom structures.

By Theorem 1.3, in each of these cases SPCm C is a canonical variety. In particular,
we can obtain the class RDfn of representable diagonal-free cylindric algebras of
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dimension n: As Ip Cnequiv = Cnuniv , RDfn = SPCm Cnuniv = SPCm Cnequiv holds.
Moreover, by Johnson [25] (see also Halmos [14] and [15, Section 5.1]), we also
have RDfn = SPCm Cncube, where

Cncube = {F× · · · × F︸ ︷︷ ︸
n

: F = 〈U,U × U〉 for some non-empty set U}

is yet another class of n-dimensional product frames that is closed under Up and
Ip .

Let us introduce notation for the corresponding n-modal logics:

Kn = Log(Cnall),
K4n = Log(Cntrans),
S5n = Log(Cnequiv) = Log(Cnuniv) = Log(Cncube).

The following theorem shows that any n-frame having n equivalence relations
and being a p-morphic image of an arbitrary n-dimensional product frame is also
a p-morphic image of a product of n equivalence frames.

Theorem 2.5. ([33]) Let F = 〈W,Ti〉i<n be an n-frame such that every Ti is an
equivalence relation, for i < n. Suppose that f : G0×· · ·×Gn−1 → F is a surjective
p-morphism, for some 1-frames Gi = 〈Ui, Ri〉, i < n. Then there exist 1-frames
G∗i = 〈Ui, R∗i 〉, i < n, such that

• each R∗i is an equivalence relation extending Ri, and

• f : G∗0 × · · · ×G∗n−1 → F is still a surjective p-morphism.

Proof. Let κ be an infinite cardinal ≥ maxi<n |Ui|. Then we can ‘fix’ the domain
of f by playing the following 2-player κ-long game over f . The players ∀ and ∃ are
building an increasing sequence 〈Rαi : α < κ〉 of binary relations on Ui, for each
i < n. At round 0, R0

i is the reflexive closure of Ri, i < n. Then clearly f is still a
surjective p-morphism from 〈U0, R

0
0〉 × · · · × 〈Un−1, R

0
n−1〉 to F, as each relation Ti

in F is reflexive.
At round α+ 1 < κ, ∀ picks

(i) either a tuple 〈i, x, y〉 such that i < n, x, y ∈ Ui, and xRαi y;

(ii) or a tuple 〈i, x, y, z〉 such that i < n, x, y, z ∈ Ui, and xRαi yR
α
i z.

∃ has to respond with Rα+1
i ⊇ Rαi such that f is still a surjective p-morphism from

〈U0, R
α+1
0 〉 × · · · × 〈Un−1, R

α+1
n−1〉 to F, and either yRα+1

i x (in case (i)), or xRα+1
i z

(in case (ii)).
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At round β for limit ordinals β < κ, they take Rβi =
⋃
α<β R

α
i , for i < n. If at

each round α < κ ∃ can respond, then R∗i =
⋃
α<κR

α
i , i < n, would clearly be an

equivalence relation as required.
Let us define a winning strategy for ∃. Suppose that in round α ∀ chooses a tuple

like in (ii) (the case of (i) is similar). Then let Rα+1
i = Rαi ∪ {〈x, z〉} and Rα+1

j =
Rαj for all j < n, j 6= i. We claim that f is still a surjective p-morphism from
〈U0, R

α+1
0 〉×· · ·×〈Un−1, R

α+1
n−1〉 to F. Indeed, the ‘backward condition’ clearly holds,

as we added pairs only to the domain of f . As concerns f being a homomorphism,
take a ‘new’ pair (if there is such) 〈u,v〉 from R̄α+1

i . Then ui = x and vi = z, and
uj = vj for j < n, j 6= i. Let w = 〈u0, . . . , ui−1, y, ui+1, . . . , un−1〉. Then uR̄αi wR̄

α
i v

and, as f is p-morphism from 〈U0, R
α
0 〉×· · ·×〈Un−1, R

α
n−1〉 to F, f(u)Tif(w)Tif(v).

As Ti is transitive, we have f(u)Tif(v) as required.

Remark 2.6. Note that a similar proof would prove a stronger statement. The
property of each Ti being an equivalence relation can be replaced with any property
of Ti that can be defined by a set of universal Horn formulas in the first-order
language having a binary predicate symbol and possibly equality (and there can
be different such properties for different i).

Theorem 2.7. ([33]) Let L be any canonical n-modal logic1 such that Kn ⊆ L ⊆
S5n. Then S5n is finitely axiomatisable over L: S5n is the smallest n-modal logic
containing L and the S5-axioms (3), for i < n.

Proof. One inclusion is clear, let us prove the other. The S5-axioms are well-known
examples of Sahlqvist formulas, and their first-order correspondent is the property
of being an equivalence relation. So, by Sahlqvist’s completeness theorem, the
smallest n-modal logic containing L and the S5-axioms is canonical, and so Kripke
complete. So it is enough to show that every rooted n-frame F for this logic is a
frame for S5n.

Take such an n-frame F. As F is a frame for Kn = Log(Cnall), by Corollary 1.6,
Ue F is a p-morphic image of some n-dimensional product frame G. As F validates
the canonical S5-axioms, they also hold in Ue F, and so all the relations in Ue F

are equivalence relations. Now by Theorem 2.5, Ue F is a p-morphic image of some
G∗ ∈ Cnequiv, and so by Corollary 1.6 again, F is a frame for S5n = Log(Cnequiv).

Let us formulate a consequence of Theorems 1.3 and 2.7 in an algebraic form:

Theorem 2.8. Let C be any class of n-dimensional product frames that is closed
under Up and Ip . Then the equational theory of RDfn is finitely axiomatisable over
the equational theory of SPCm C: one only has to add the equations (1), for i < n.

1By an n-modal logic we mean any set of n-modal formulas that contains all propositional
tautologies, the formulas (K) for each 2i, and is closed under the derivation rules of Substitution,
Modus Ponens and Necessitation, for i < n.
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Remark 2.9. By Remarks 2.4 and 2.6, we can have similar statements for any
SPCmK in place of RDfn, whenever K = C0 × · · · × Cn−1 for come classes Ci of
1-frames, each of which is definable by Sahlqvist formulas having universal Horn
first-order correspondents.

Theorems 2.7 and 2.8 show that any negative result on the equational axioma-
tisation of RDfn (such as its non-finiteness [25], for n ≥ 3) transfers to many
varieties generated by complex algebras of n-dimensional product frames (or, to
many-dimensional modal logics like Kn). In other words, these theorems also
mean that all the complexity of RDfn (or its logic counterpart S5n) comes from the
many-dimensional structure and is already present in Kn. Though, by a general
result of [9], Kn is known to be recursively enumerable, an axiomatisation of Kn

should be quite complex, whenever n ≥ 3: any such axiomatisation should con-
tain n-modal formulas of arbitrary modal depth for each modality [29], n-modal
formulas without first-order correspondents [33], and infinitely many propositional
variables [32]. At the moment we cannot use Theorem 2.7 to infer the latter, as
it is not known whether S5n (or RDfn) can be axiomatised using finitely many
variables, whenever n ≥ 3.

For n = 2, the following generalisation of RDf2 = Df2 (see e.g. [15, 5.1.47])
holds:

Theorem 2.10. (Gabbay and Shehtman [9]) Let Σ0 and Σ1 be sets of 1-modal
formulas having universal Horn first-order correspondents, and let

C = {F0 × F1 : F0 |= Σ0, F1 |= Σ1}.

Then Log(C) is the smallest 2-modal logic containing Σ0 for 30, Σ1 for 31, and
the interaction axioms

3031p↔ 3130p and 3021p→ 2130p.

So, in particular, K2, K42 and S52 (the logic counterpart of RDf2) are all finitely
axiomatisable. Note that in case of S52 the second interaction axiom (confluence)
follows from the first (commutativity).

Next, we make use of a result of Hirsch and Hodkinson [18] saying that repre-
sentability of finite subdirectly irreducible relation algebrass undecidable. To begin
with, this result implies the following:

Theorem 2.11. ([21]) If n ≥ 3 then it is undecidable whether a finite subdirectly
irreducible n-dimensional diagonal-free cylindric algebra is representable.

Proof. Monk [36] introduced a construction that turns any finite subdirectly irre-
ducible relation algebra A to a finite 3-dimensional cylindric algebra Ca3A such
that
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• A is representable as a relation algebra iff Ca3A ∈ RCA3;

• the diagonal-free reduct Df3A of Ca3A is subdirectly irreducible and gener-
ated by 2-dimensional elements.

Now using the results of Halmos[14] and Johnson [25] (see also [15, 5.1]), we obtain
that Ca3A ∈ RCA3 iff Df3A ∈ RDf3. Next, for every n > 3, we can extend Df3A

to an n-dimensional diagonal-free cylindric algebra DfnA by keeping the same
domain and c0, c1 and c2 as in Df3A, and defining ci as the identity function,
for each 3 ≤ i < n. Then it is straightforward to show that Df3A ∈ RDf3 iff
DfnA ∈ RDfn.

Now take any finite subdirectly irreducible n-dimensional diagonal-free cylindric
algebra A, and consider its atom structure AtA. Then AtA is an n-frame, so by (5),

AtA |= S5n ⇐⇒ A ∼= Cm AtA ∈ RDfn. (7)

Theorem 2.12. ([21]) Let n ≥ 3 and let L be any set of n-modal formulas with
Kn ⊆ L ⊆ S5n. Then the following hold:

(i) It is undecidable whether F |= L for a finite rooted n-frame F.

(ii) L is not finitely axiomatisable.

Proof. Take any finite subdirectly irreducible n-dimensional diagonal-free cylindric
algebra A. Then its atom structure AtA is rooted and all its relations are equivalence
relations, so by Corollary 1.7 and Theorem 2.5,

AtA |= L ⇐⇒ AtA |= S5n.

Therefore, item (i) follows from (7) and Theorem 2.11.
Item (ii) clearly follows from (i), as long as a finite axiomatisation of L means a

finitary proof system that is suitable for testing whether F |= L for a finite n-frame
F. This does not necessarily mean that only the so-called ‘orthodox’ derivation
rules (Substitution, Modus Ponens and Necessitation) of modal logic are allowed.
However, certain ‘non-orthodox’ rules such as some versions of the irreflexivity rule
(see Venema’s chapter in this volume) are not suitable for this purpose.

Observe that the atom structure AtA = 〈W,Ti〉i<n of a finite subdirectly ir-
reducible n-dimensional diagonal-free cylindric algebra A is not only rooted but,
having chosen any of its points r as root, has the following property:

∀x ∈W ∃ y0, . . . , yn
(
y0 = r ∧ yn = x ∧ ∀i < n (yi = yi+1 ∨ yiTiyi+1)

)
. (8)
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Now, for each w ∈ W , let us introduce a propositional variable pw, and define an
n-modal formula ϕA by taking

2+
0 . . .2

+
n−1

( ∨
w∈W

pw ∧
∧

w 6=w′∈W
¬(pw ∧ pw′)∧

∧
i<n,w,w′∈W

wTiw′

pw → 3ipw′ ∧
∧

i<n,w,w′∈W
¬(wRiw′)

pw → ¬3ipw′
)
, (9)

where 2+
i ψ abbreviates ψ ∧2iψ. This formula is the n-modal version of the frame

formula (also known as splitting formula, see [42, 6]) of the n-frame AtA. It is
clearly satisfiable in AtA, and it is supposed to describe AtA ‘up to p-morphism’
in n-frames with property (8). However, as the following lemma shows, it is quite
powerful in arbitrary product frames as well:

Lemma 2.13. ([21]) If ϕA is satisfied in any n-dimensional product frame, then
there is some G ∈ Cnuniv such that AtA is a p-morphic image of G.

Proof. Suppose M,x |= ϕA for some model M over F = F0 × · · · × Fn−1, for some
Fi = 〈Ui, Ri〉, i < n. Take U−i = {u ∈ Ui : u = xi or xiRiu}, and define a function
f from U−0 × · · ·U

−
n−1 to AtA by taking,

f(u) = w ⇐⇒ M,u |= pw.

It is not hard to show that f is well-defined and a p-morphism from the n-
dimensional product G of universal frames over U−i onto AtA.

This lemma now implies that, for every L with Kn ⊆ L ⊆ S5n,

¬ϕA /∈ L ⇐⇒ AtA |= S5n.

So, by (7) and Theorem 2.11, we obtain the following generalisation of Maddux’s
result [34] on the undecidability of the equational theory of RDfn, for n ≥ 3:

Theorem 2.14. ([21]) Let n ≥ 3 and let L be any set of n-modal formulas with
Kn ⊆ L ⊆ S5n. Then L is undecidable.

Remark 2.15. The undecidability of S5n can also be derived from Theorem 2.12
and (7) as follows. As observed by Tarski [40], embeddability of a finite algebra
A can be described by an existential first-order sentence in the language of A.
As RDfn = SPCm Cnuniv is a discriminator variety, non-embeddability of a finite
diagonal-free cylindric algebra into a representable one can be described in RDfn
by an equation. Note, however, that other varieties of the form SPCm C (such as,
say, SPCm Cnall) might not be discriminator varieties and we have to use something
like Lemma 2.13.
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Note that one can find undecidable many-dimensional modal logics already in
dimension 2. Gabelaia et al. [10] provide a wide choice of these logics, in a sense
the most surprising among them being K42. This undecidable logic is finitely ax-
iomatisable with the natural axioms by Theorem 2.10. In the algebraic setting, we
obtain that the equational theory of two commuting and confluent closure operators
is undecidable.

The reader might have the impression by now that metalogical properties of,
say, Kn and S5n always go hand in hand. We mention a property for which this is
not the case: while Kn does have the finite model property [9], S5n does not [30],
whenever n ≥ 3.

3 With diagonals

We define an nδ-frame to be a structure of the form 〈W,Ti, Eij〉i,j<n, where 〈W,Ti〉i<n
is an n-frame and Eij is a subset of W , for i, j < n. Multimodal formulas matching
nδ-frames, nδ-modal formulas, are built up from propositional variables using the
Booleans, unary modal operators 3i and 2i, and constants δij , for i, j < n.

The following notion is a generalisation of atom structures of n-dimensional full
cylindric set algebras.

Definition 3.1. Given 1-frames Fi = 〈Wi, Ri〉, i < n, their δ-product is the nδ-
frame

(F0 × · · · × Fn−1)δ = 〈W0 × · · · ×Wn−1, R̄i, Id ij〉i,j<n,

where 〈W0 × · · · ×Wn−1, R̄i〉i<n = F0 × · · · × Fn−1 and, for i, j < n,

Id ij = {u ∈W0 × · · · ×Wn−1 : ui = uj}.

Such n-frames we call n-dimensional δ-product frames.

We have the analogues of Propositions 2.2 and 2.3:

Proposition 3.2. Let U be an ultrafilter over some index set I, and let Fik be a
1-frame, for i ∈ I, k < n. Then:∏

i∈I
(Fi0 × · · · × Fin−1)δ/U ∼=

(
(
∏
i∈I

Fi0/U)× · · · × (
∏
i∈I

Fin−1/U)
)δ
.

Proposition 3.3. Let F = (F0 × · · · × Fn−1)δ and x be a point in F. Then:

Fx = (Fx0
0 × · · · × F

xn−1

n−1 )δ.
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Given a class C of n-dimensional product frames, we denote by Cδ the corre-
sponding class of δ-product frames:

Cδ = {(F0 × · · · × Fn−1)δ : F0 × · · · × Fn−1 ∈ C}.

It is straightforward to see the following:

Proposition 3.4. For any class C of n-dimensional product frames, Log(Cδ) is a
conservative extension of Log(C).

Remark 3.5. Just like in Remark 2.4, observe that as a consequence of Proposi-
tions 3.2 and 3.3 we obtain the following. If each class Ci of 1-frames, for i < n, is
defined by universal formulas in the first-order language having one binary pred-
icate symbol and possibly equality, then (C0 × · · · × Cn−1)δ is closed under taking
ultraproducts and point-generated inner substructures. Here are some examples of
this kind:

Cnδall = the class of all n-dimensional δ-product frames,

Cnδequiv = the class of all n-dimensional δ-products of equivalence frames,

Cnδuniv = the class of all n-dimensional δ-products of universal frames.

Since C is closed under Up and Ip in each of these cases, SPCm C is a canonical
variety by Theorem 1.3. As Ip Cnδequiv = Cnδuniv , we have SPCm Cnδuniv = SPCm Cnδequiv.

However, consider now the class

Cnδcube = {( F× · · · × F︸ ︷︷ ︸
n

)δ : F = 〈U,U × U〉 for some non-empty set U}

= the class of all n-dimensional full cylindric set algebra
atom structures

that is also closed under Up and Ip . Unlike in the diagonal-free case, SPCm Cnδcube =
RCAn is properly contained in SPCm Cnδequiv, as for instance the equations cidij = 1
fail in the latter. (As we shall see below, in a sense they are the only missing ones.)

Let us introduce notation for some nδ-modal logics:

Knδ = Log(Cnδall)

S5nδ = Log(Cnδequiv) = Log(Cnδuniv).

The proof of the following two theorems are completely analogous to the re-
spective proofs of Theorems 2.5 and 2.7:

13



Theorem 3.6. Let F = 〈W,Ti, Eij〉i,j<n be an nδ-frame such that every Ti is an
equivalence relation, for i < n. Suppose that f : (G0 × · · · × Gn−1)δ → F is a
surjective p-morphism, for some 1-frames Gi = 〈Ui, Ri〉, i < n. Then there exist
1-frames G∗i = 〈Ui, R∗i 〉, i < n, such that

• each R∗i is an equivalence relation extending Ri, and

• f : (G∗0 × · · · ×G∗n−1)δ → F is still a surjective p-morphism.

Theorem 3.7. Let L be any canonical nδ-modal logic with Knδ ⊆ L ⊆ S5nδ.
Then S5nδ is finitely axiomatisable over L: S5nδ is the smallest nδ-modal logic
containing L and the S5-axioms (3), for i < n.

It turns out that the equations cidij = 1 (or, the nδ-modal formulas 3iδij) are
quite strong in the sense that they can ‘force’ the S5-properties in the presence of
‘many-dimensionality’, as the following surprising theorems show:

Theorem 3.8. Let F = 〈W,Ti, Eij〉i,j<n be an nδ-frame such that, for all i, j < n,

for all w ∈W there is some w′ ∈ Eij with wTiw′. (10)

Suppose that f : (G0 × · · · × Gn−1)δ → F is a surjective p-morphism, for some
1-frames Gi = 〈Ui, Ri〉, i < n. Then Ui = Uj and Ri is the universal relation on
Ui, for all i, j < n.

Proof. We show first that Ui ⊆ Uj , for any i, j < n, i 6= j. To this end, let u ∈ Ui
and take any x ∈ U0× · · ·×Un−1 such that xi = u. By (10), there is some w ∈ Eij
such that f(x)Tjw. As f is a p-morphism, there is y ∈ Id ij such that xR̄jy, so
u = xi = yi = yj ∈ Uj as required.

Next, we show that uRiu′ hold, for all i < n, u, u′ ∈ Ui. To this end, take some
j 6= i and x ∈ nUi such that xi = u and xj = u′. As f is a p-morphism, there is
y ∈ Id ij such that xR̄iy, so u = xiRiyi = yj = xj = u′.

Theorem 3.9. Let L be any canonical nδ-modal logic with Knδ ⊆ L ⊆ Log(Cnδcube).
Then Log(Cnδcube) is finitely axiomatisable over L: Log(Cnδcube) is the smallest nδ-modal
logic containing L and the nδ-formulas 3iδij , for i, j < n.

Proof. Like that of Theorem 2.7, using Theorem 3.8 and that each 3iδij is a
Sahlqvist formula, with property (10) being its first-order correspondent.

A consequence of Theorems 1.3 and 3.9 formulated in an algebraic setting is as
follows:

Theorem 3.10. Let C be any class of n-dimensional δ-product frames that is closed
under Up and Ip . Then the equational theory of RCAn is finitely axiomatisable over
the equational theory of SPCm C: one only has to add the equations cidij = 1, for
i, j < n.

14



Theorems 3.9 and 3.10 show that any negative result on the equational ax-
iomatisation of RCAn transfers to many varieties generated by complex algebras of
n-dimensional δ-product frames (or, to many-dimensional modal logics like Knδ).
There are many such, whenever n ≥ 3: RCAn = SPCm Cnδcube is not only not
finitely axiomatisable [37], but cannot be axiomatised using finitely many variables
and finitely many occurrences of the diagonals [1]. RCAn cannot be axiomatised
using only Sahlqvist equations [22, 41]. Moreover, it is also known [20] that the
class of all nδ-frames F such that F |= Log(Cnδcube) (strongly representable cylindric
atom structures) is not closed under ultraproducts, so Log(Cnδcube) cannot be ax-
iomatised by any set of nδ-modal formulas having first-order correspondents. The
even more general result of [24] saying that representable relation algebras do not
have a canonical axiomatisation might also hold for RCAn. So all these are true
for, say, Log(Cnδall) = Knδ. Though it is not hard to see that Knδ is recursively
enumerable, there is a further difficulty in finding an explicit infinite axiomatisa-
tion for it. The known explicit (infinite) equational axiomatisations for RCAn (for
n ≥ 3) [37, 16, 17] (see also [15, 4.1] and [19, 8.3]) all make use of RCAn being a
discriminator variety. But the algebraic counterpart SPCm Cnδall of Knδ is not such.

Remark 3.11. Moreover, when we have diagonals, finding an axiomatisation can
be tricky even for n = 2. Though RCA2 is known to be finitely axiomatisable (see
e.g. [15, 3.2.65]), and it is also finitely axiomatisable over K2δ by Theorem 3.10,
somewhat surprisingly K2δ is not even axiomatisable using finitely many variables,
as shown by Kikot [27].

Let us next turn to decision problems. Hodkinson [23] shows that it is unde-
cidable whether a finite subdirectly irreducible n-dimensional cylindric algebra is
representable, for any finite n ≥ 3. Using this, with diagonals we can have a bit
better than Theorem 2.12:

Theorem 3.12. Let n ≥ 3 and let L be any set of nδ-modal formulas with Knδ ⊆
L ⊆ Log(Cnδcube). Then the following hold:

(i) It is undecidable whether F |= L for a finite rooted nδ-frame F.

(ii) L is not finitely axiomatisable.

Proof. Like that of Theorem 2.12, using Theorem 3.8.

Observe that the atom structure AtA = 〈W,Ti, Eij〉i,j<n of a finite subdirectly
irreducible n-dimensional cylindric algebra A not only has property (8), but it also
has (10). Now define an nδ-modal formula ψA by adding the following conjunct to
ϕA in (9):

2+
0 . . .2

+
n−1

∧
i,j<n

(
δij ↔

∨
w∈Eij

pw
)
. (11)
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Then ψA is satisfied in AtA, and we have the following analogue of Lemma 2.13:

Lemma 3.13. If ψA is satisfied in any n-dimensional δ-product frame, then there
is some Gδ ∈ Cnδcube such that AtA is a p-morphic image of Gδ.

Proof. Suppose that ψA is satisfied in Fδ for some n-dimensional product frame F.
Then ϕA is satisfied in F. Now define G ∈ Cnuniv and f as in the proof of Lemma 2.13.
As ϕA is satisfied in F, f is a p-morphism from G onto the diagonal-free reduct of
AtA. However, by (11), f is in fact a p-morphism from Gδ onto AtA. As AtA has
property (10), Theorem 3.8 implies that Gδ ∈ Cnδcube, as required.

Now we can have the analogue of Theorem 2.14:

Theorem 3.14. Let n ≥ 3 and let L be any set of nδ-modal formulas with Knδ ⊆
L ⊆ Log(Cnδcube). Then L is undecidable.

Proof. Like that of Theorem 2.14, using Lemma 3.13. Note that if Knδ ⊆ Log(C) ⊆
S5nδ for some class C of n-dimensional δ-product frames, then the undecidability
of Log(C) already follows from Theorem 2.14 and Proposition 3.4.

Remark 3.15. There are cases when adding the diagonal does matter in the deci-
sion problem. An example is K2 that is decidable [9], while K2δ is not [28].
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