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Abstract. Two-dimensional products of modal logics having at least
one ‘non-transitive’ component, such as K x K, K x K4, and K x S5,
are often known to be decidable and have the finite model property.
Here we show that by adding the diagonal constant to the language this
might change: one can have formulas that are only satisfiable in infinite
‘abstract’ models for these logics.

1 Introduction

The formation of Cartesian products of various structures (vector and topological
spaces, algebras, etc.) is a standard mathematical way of modelling the multi-
dimensional character of our world. In modal logic, products of Kripke frames are
natural constructions allowing us to reflect interactions between modal operators
representing time, space, knowledge, actions, etc. The product construction as a
combination method on modal logics has been used in applications in computer
science and artificial intelligence (see [2, 10] and references therein) ever since its
introduction in the 1970s [15, 16].

If the component frames are unimodal, then the modal language speaking
about product frames has two interacting box operators (and the corresponding
diamonds), one coming from each component. Product logics are Kripke com-
plete logics in this language, determined by classes of product frames. In general
they can also have other, non-product, frames. So one can consider two differ-
ent kinds of the finite model property (fmp): one w.r.t. arbitrary (‘abstract’ or
‘non-standard’) frames, and a stronger one, w.r.t. product frames only. As the
fmp can be an important tool in establishing decidability of a modal logic, it has
been extensively studied in connection with product logics as well. In particular,
if one of the component logics is either K or S5, then many product logics are
known to be decidable and have the fmp [3,2,17]. Product logics like K x K,
K x S5 and S5 x S5 even have the fmp w.r.t. product frames [4, 2,13]. On the
other hand, when both component logics have transitive frames only, such as
K4, S4, GL, then product logics are usually undecidable and lack the ‘abstract’
fmp [5, 6, 14].

Here we take the first steps in investigating the expressive power of extensions
of decidable product logics with ‘dimension-connecting’ connectives. Perhaps



the simplest and most natural operation of this sort is the diagonal constant
6. The main reason for introducing such a constant has been to give a ‘modal
treatment’ of equality of classical first-order logic. Modal algebras for the product
logic S5 x S5 extended with diagonal constant are called representable cylindric
algebras of dimension 2 and have been extensively studied in the algebraic logic
literature [8]. ‘S5 x S5 plus ¢’ is known to be decidable and has the finite model
property, even w.r.t. product frames [13]. Adding the diagonal constant does not
even change the NEXPTIME-completeness of the S5 x S5-satisfiability problem
[7,12]. Here we show that, rather surprisingly, products of other decidable modal
logics may behave differently (see Theorem 3 below). Though, say, K x S5 also
has a NEXpPTIME-complete satisfiability problem and has the fmp w.r.t. product
frames [3,12,2], by adding the diagonal constant to the language one can find
some formula such that any frame for K x S5 satisfying it must be infinite.

As concerns our formulas and the technique used in the proofs below, we
would like to emphasise that—unlike [14, 5, 6, 2]—in general here we are neither
dealing with transitive frames, nor having some kind of universal modality in the
language. So the fact that infinity can be forced by a formula is quite unusual.
We hope that the formulas below will either help in encoding some undecidable
problem and showing that decidable product logics like K x K, K x S5 and
K x K4 become undecidable if we add the diagonal constant, or give some hints
on how their infinite models can be represented by some finite means, say, using
mosaics or loop-controlled tableaux, in order to prove decidability.

2 Products and -products

We assume as known the fundamental notions of modal logic (such as uni- and
multimodal Kripke frames and models, satisfiability and validity of formulas,
generated subframes, etc.) and their basic properties, and use a standard nota-
tion.

Let us begin with introducing the product construction and its extension
with a diagonal element. Given unimodal Kripke frames g, = (Wy, Rg) and
$1 = (W1, Ry), their product is the bimodal frame

8’0 X gl = (WO X W17Rh7Rv)7

where Wy x W; is the Cartesian product of sets Wy and W; and the binary
relations Ry, and R, are defined by taking, for all u,u’ € Wy, v,v’ € Wy,

(u,v)Rp(u',v") if wRou' and v =1',
(u,v)R,(u',v") iff wRjv' and u=u'.

The §-product of Fo and F; is the 3-modal frame
o x°81 = (Wo x W1, Ry, Ry, D),
where (Wo x W1, Ri, Ry) = 8o X §1 and
D ={(u,u):u e WonWi}.



The respective modal languages speaking about product and d-product frames
are defined as follows.

Lo : Y=p|T[L[ [ Athz|Cotp | Dot | Crep [ Ortp
L3 Y=p|TIL[ [ A2 | Cotp | Doy [ O1¢p [ Drtp |6
For i = 0,1, let L; be a Kripke complete unimodal logic in the language using

the modal operators ¢; and O;. The product and §-product of Ly and L, are
defined, respectively, as

Lo x Ly = {¢ € L5 : 1 is valid in Fo X F1, §; is a frame for L;, i = 0,1}
Lo x°L; = {yp € .Cg : 1 is valid in Fo x°F1, Fi is a frame for L;, i = 0,1}.

The following proposition shows that we can define d-products differently, in
a way that might look more natural to some:

Proposition 1. For all Kripke complete logics Lo and L1,

Lo x°Ly = {3 € L5 : ¢ is valid in Fo x°F1, §i is a frame for L;,
i=0,1, Fo and F1 have the same set of worlds}.

Proof. One inclusion is obvious. For the other, suppose ¢ ¢ Lo x° Ly, that is,
To X°F1 W~ o, where §; = (W, R;) is a frame for L;, i = 0,1. We define frames
&y and &; such that:

1. &; is a frame for L;, for i = 0, 1.

2. B9 and &; have the same set of worlds, Wy U W;.

3. Fo x%3F1 is a generated subframe of By x° ;.

To this end, for i = 0,1, let §; be either the one-element irreflexive or the one-
element reflexive frame, depending on which of these two is a frame for L;. (As a
Kripke complete logic is always consistent, by Makinson’s theorem [11] at least
one of them would do for sure.) Now, for {i,j} = {0,1}, let &; be the disjoint
union of §; and (W]‘ — (W N Wl))—many copies of §;.

The proof of the following statement is straightforward from the definitions:
Proposition 2. Lg x% L1 is a conservative extension of Lo x L.

At first sight, the diagonal constant can only be meaningfully used in ap-
plications where the domains of the two component frames consist of objects
of similar kinds, or at least overlap. However, as modal languages cannot dis-
tinguish between isomorphic frames, in fact any subset D C Wy x W can be
considered as an interpretation of the diagonal constant, once it has the following
properties:

vV € WO) vyayl € Wl ((xay)a (mayl) € D S y= yl)a
Vz,z' € Wo, Vy € Wy ((z,9),(2',y) €D = =z=21).

So, say, when a product frame represents the movement of some objects in time,
then the diagonal constant can be used for collecting a set of special time-
stamped objects, provided no special object is chosen twice and at every moment
of time at most one special object is chosen.



3 Main results

Although §-product logics are determined by classes of d-product frames, of
course there are other, non-§-product, frames for them. As usual, a multimodal
logic L (in particular, a §-product logic Lo x°? L1) is said to have the (abstract)
finite model property (fmp, for short) if, for every formula ¢ in the language of
L, if ¢ ¢ L then there is a finite frame § for L such that § [~ ¢. (By a standard
argument, this means that 9 % ¢ for some finite model I for L; see, e.g., [1].)
Below we show that many é-product logics (with K x°K, K x°K4 and K x°S5
among them) lack the fmp.

Let ¢ be the conjunction of the following three (variable-free) £3-formulas:

©100(8 A Do L) (1)
O, O0(=8 A O T A Dgé) (2)
O00<10 (3)

First we show that any frame for §-product logics satisfying ¢ should be infi-
nite. To this end, we have a closer look at arbitrary (not necessarily §-product)
frames for é-product logics. It is straightforward to see that §-product frames
always have the following first-order properties:

Vzyz (2Ryy AyRrz — Ju (zRpu A uRyz))
Vzyz (zRry A yRyz = Ju (xRyu A uRyz))
Vryz (xR,,y ANzRpz — Ju (yRpu A zRvu))
Vzyzu (xRpy A xRpz A zRpu A D(y) A D(u) = y = u)

These properties are modally definable by the respective £3-formulas:
(lcom) <©100p = $OpC1p

(rcom) <©gO1p = ©100p

(chr)  ©oOip — O3O0p

(diag)  ©o(6 Ap) = BoDo(6 — p)

Theorem 1. Let § = (W, Ry, R1,A) be any frame validating (lcom), (rcom),
(chr) and (diag). If o is satisfied in §, then § should be infinite.

Proof. Let § = (W, Rg, Ry, A) be as required and suppose that ¢ is satisfied at
point r of a model M based on §F. We define inductively four infinite sequences

Ly L1y L2yenny Yo, Y1,Y2,-- -, U, UL, U2y -+« and Vo, V1,V2,...

of points from W such that, for every i < w,

(genl) (M, ;) =6,
(gen2) (M,yi) = ~d A GoT ADgd



(gen3) rRlui, UiRo.’L'i, uiRoy,-, and yiRo.’L'i
(gend) if i > 0 then rRov;, viRiz; and v;Riy;-1,

see Fig. 1. (We do not claim at this point that, say, all the x; are distinct.)
To begin with, by (1), there are ug, o such that rRyugRoxo and

(E)Jt, .’L'()) |= A OpL. (4)

By (2), there is yo such that ugRoyo and (M, yo) = —d A O T A Ogd. By (diag),
we have that yoRozg, and so (genl)—(gen3) hold for i = 0.

Now suppose that, for some n < w, z; and y; with (genl)—(gend) have
already been defined for all i < n. By (gen3) for i« = n and by (Ilcom), there is
Un+1 such that rRovp41R1yn- So by (3), there is 41 such that (M, z,41) 6
and v, 11 R1%, 1. Now by (rcom), there is u,41 such that rRyju, 1 RoTpy1- So,
by (2), there is yp41 such that u,41Roynt1 and (M, ypr1) E 20 A OCoT A Oy,
and so by (diag) yn+1RoZn+1, as required (see Fig. 1).

U Yi

>

__.-' Yi+1 5

Ui+1-/;\?i+l .':.
A : g A ;

r Vi41

Fig. 1. Generating the points z;, y;, u; and v;.

Now we will prove that in fact all the z,, are different. We claim that, for all
n < w,

(M,z,) EORTATEHL and (Myy,) E OfHTADE2L  (5)

(here OJT =T, OFT'T = ©e0ORT, OYL = L and Opt' L = 0,02 1). In order
to prove this claim, first observe that, by (genl)—(gen3) and (diag), we have

Vz (yiRoz — 2 = zi), (6)



for all 4 < w. Now we prove (5) by induction on n. For n = 0: Obviously, we
have (I, zo) = T, and (9, zo) = OoL by (4). (M, y0) = CoT by (gen2), and
(9M,5o) L= B by (6) and (M, z0) (= o L.

Now suppose that (5) holds for n. As (M, y,) = 4T T, by (Icom), (chr) and
(gend) we have (M, x,,11) | OF T T. Therefore, we obtain (9, y,11) | OFHT
by (gen3). As (M, y,) E 0021, we have (I, ,41) = OF 2L by (Icom), (chr)
and (gen4). Therefore, by (6), we have (90, y,+1) | Op7° L, as required.

Next, we consider a variant of ¢, that is satisfiable in d-product frames
with a reflexive second component. (The idea is a version of the ‘chessboard-
trick’ of [6].) We introduce a fresh propositional variable v, and define ¢% as the
conjunction of the following £3-formulas:

01 (Cov — )

O1(vACo(d A DgL))

O (v = Oo(=8 A OoT A Tob))
OoO1(v A )

Theorem 2. Let § = (W, Ry, Ry, A) be any frame validating (lcom), (rcom),
(chr) and (diag). If %, is satisfied in §, then § should be infinite.

Proof. Tt is analogous to the proof of Theorem 1. Observe that if (9, r) = @&,
then (9, u;) = v, for all i < w.

Next, we show that ¢ and ¢l are satisfiable in certain infinite §-product
frames. Indeed, define binary relations on w + 1 by taking

Ry ={(w,n):n<w}U{(n+1n):n<w},
Ry = {(w,n) : n < w},
R*¥" = reflexive closure of Ry,

R™" = the universal relation on w + 1,
and let

$o = (w+ 1, Ry),
$H1 = (w+1,Ry),
9 = (w+ 1, R,
HY = (w+ 1, R{™).

Theorem 3. Let Ly be any Kripke complete unimodal logic such that o is a
frame for Ly (such as, e.g., K) and let L1 be any Kripke complete unimodal
logic such that either $1 or ﬁfeﬂ or H¥W s a frame for Ly (such as, e.g.,
K, K4, GL, T, S4, Grz, B, S5). Then Lo x°L; does not have the ‘abstract’

finite model property.



Proof. Tt is straightforward to see that . is satisfiable at the root (w,w) of
$o x°9H1. As concerns the other cases, take the following model 90, either over
fJO Xéf_)i‘eﬂ or f.)O xéﬁ%nw:

M) ={(n,m):n <w,m<w}

Then, in both cases, (9, (w,w)) = ¢%.
Now the theorem follows from Theorems 1 and 2.

4 Discussion

1. Let us emphasise that some results in Theorem 3 are rather surprising, as
the corresponding (diagonal-free) products do have the fmp. It is shown in
[3,17] (using filtration) that if Lo is either K or S5, and L; is axioma-
tisable by formulas having Horn first-order correspondents (such as e.g.,
K, K4, T, S4, B, S5), then Lo x L; has the fmp. Moreover, K x K and
K x S5 even have the fmp w.r.t. product frames [4, 2].

2. Let us next summarise what is known about the fmp of -products that are
out of the scope of Theorem 3. If both components Lo and L, are logics
having only transitive frames of arbitrary depth and width (such as, e.g.,
K4, GL, S4, Grz), then it is shown in [5,6] that already Lo x Ly lacks
the fmp. So by Prop. 2, Ly x® L; does not have the fmp either. It is not
clear, however, whether the ‘chessboard-trick’ of [6] can be used to extend
the proofs of our Theorems 1-3 to cover d-products with a reflexive (but not
necessarily transitive) first component, like e.g. T x°T.

3. Though representable diagonal-free cylindric algebras of dimension 2 are the
modal algebras of S5 x S5, two-dimensional representable cylindric algebras
are not exactly the modal algebras of S5 x°S5, but those of

S5 x%' 85 = {y € L3 : 1 is valid in (W, W x W) x5 (W, W x W),
W is a non-empty set}.

(That is, unlike in Prop. 1, only d-product frames of rooted S5-frames sharing
a common set of worlds are considered in this definition.) It is straightforward
to see that S5x9S5 C S5x9'S5 and that this inclusion is proper: for instance,
Opd belongs to S5 %985 but not to S5 xS5. The propositional modal logic
S5 x%' S5 is also connected to two-variable first-order logic with equality, so
there are several known proofs showing that S5 x?'85 is decidable and has
the fmp, even w.r.t. ‘d-squares’ of universal frames [13, 7]. Perhaps the same
is true for S5 x°S5.

4. As concerns the decision problem for §-product logics other than S5 x9' S5,
not much is known. It is straightforward to extend the proof given in [3] for
product logics to d-products, and show that Lo x°L; is recursively enumer-
able whenever the class of all frames for each of Ly and L; is recursively
first-order definable. However, even having the fmp would not necessarily



help in solving the decision problems. It is shown in [9] that, for many com-
ponent logics Lo and L; (with K, T, K4, S4 among them), Lo x%L; is
not only not finitely axiomatisable, but it cannot be axiomatised by any
set of £L3-formulas containing finitely many propositional variables. It is not
known, however, whether there is some other way of deciding if a finite frame
is a frame for such a d-product logic.

Acknowledgement. Thanks are due to Stanislav Kikot for the problem and
interesting discussions.
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