The decision problem of modal product logics
with a diagonal, and faulty counter machines

C. Hampson!, S.Kikot?, and A. Kurucz!

IDepartment of Informatics
King’s College London, U.K.

2Institute for Information Transmission Problems
Moscow Institute for Physics and Technology
Moscow, Russia

Abstract

In the propositional modal (and algebraic) treatment of two-variable first-order logic
equality is modelled by a ‘diagonal’ constant, interpreted in square products of universal
frames as the identity (also known as the ‘diagonal’) relation. Here we study the decision
problem of products of two arbitrary modal logics equipped with such a diagonal. As
the presence or absence of equality in two-variable first-order logic does not influence
the complexity of its satisfiability problem, one might expect that adding a diagonal
to product logics in general is similarly harmless. We show that this is far from being
the case, and there can be quite a big jump in complexity, even from decidable to the
highly undecidable. Our undecidable logics can also be viewed as new fragments of first-
order logic where adding equality changes a decidable fragment to undecidable. We prove
our results by a novel application of counter machine problems. While our formalism
apparently cannot force reliable counter machine computations directly, the presence of a
unique diagonal in the models makes it possible to encode both lossy and insertion-error
computations, for the same sequence of instructions. We show that, given such a pair of
faulty computations, it is then possible to reconstruct a reliable run from them.

1 Introduction

It is well-known that the first-order quantifier Va can be considered as an ‘S5-box’: a propo-
sitional modal O-operator interpreted over universal frames (that is, relational structures
(W, R) where R = W x W). The so-called ‘standard translation’, mapping modal formulas
to first-order ones, establishes a validity preserving, bijective connection between the modal
logic S5 and the one-variable fragment of classical first-order logic [42]. The idea of gener-
alising such a propositional approach to full first-order logic was suggested and thoroughly
investigated both in modal setting [30, 20, 41], and in algebraic logic [16, 18]. In particular,
the bimodal logic S5 x S5 over two-dimensional (2D) squares of universal frames corresponds
to the equality and substitution free fragment of two-variable first-order logic, via a trans-
lation that maps propositional variables P to binary predicates P(z,y), the modal boxes Oy
and O; to the first-order quantifiers Vo and Vy, and the Boolean connectives to themselves.



In this setting, equality between the two first-order variables can be modally ‘represented’ by
extending the bimodal language with a constant d, interpreted in square frames with universe
W x W as the diagonal set

{{z,z) :x € W},

The resulting modal logic (algebraically, representable 2D cylindric algebras [18]) is now
closer to the full two-variable fragment (though P(y, x)-like transposition of variables is still
not expressible in it). The generalisation of the modal treatment of full two-variable first-order
logic to products of two arbitrary modal logics equipped with a diagonal constant (together
with modal operators ‘simulating’ the substitution and transposition of first-order variables)
was suggested in [36, 37]. The product construction as a general combination method on
modal logics was introduced in [8], and has been extensively studied ever since (see [7, 21]
for surveys and references). Two-dimensional product logics can not only be regarded as
generalisations of the first-order quantifiers [23], but they are also connected to several other
logical formalisms, such as the one-variable fragment of modal and temporal logics, modal and
temporal description logics, and spatio-temporal logics. At first sight, the diagonal constant
can only be meaningfully used in applications where the domains of the two component
frames consist of objects of similar kinds, or at least overlap. However, as modal languages
cannot distinguish between isomorphic frames, in fact any subset D of a Cartesian product
Wi, x W, can be considered as an interpretation of the diagonal constant, as long as it is both
‘horizontally’ and ‘vertically’ unique in the following sense:

Vo € Wy, Vy,y € Wy, ((z,y), (x,y) €D — y=1), (1)
Vz,2' € Wy, Vy € Wu ((z,y), (2',y) € D — z=1d'). (2)

So, say, in the one-variable constant-domain fragment of first-order temporal (or modal) logics,
the diagonal constant can be added in order to single out a set of special ‘time-stamped’
objects of the domain, provided no special object is chosen twice and at every moment of
time (or world along the modal accessibility relation) at most one special object is chosen.

In this paper we study the decision problem of §-product logics: arbitrary 2D product logics
equipped with a diagonal. It is well-known that the presence or absence of equality in the
two-variable fragment of first-order logic does not influence the CONEXPTIME-completeness
of its validity problem [34, 28, 14]. So one might expect that adding a diagonal to product
logics in general is similarly harmless. The more so that decidable product logics like K x K
(the bimodal logic of all product frames) remain decidable when one adds modal operators
‘simulating’ the substitution and transposition of first-order variables [38]. However, we show
that adding the diagonal is more dangerous, and there can be quite a big jump in complexity.
In some cases, the global consequence relation of product logics can be reduced the validity-
problem of the corresponding §-products (Prop. 2). We also show (Theorems 2, 4) that if
L is any logic having an infinite rooted frame where each point can be accessed by at most
one step from the root, then both K x° L and K4.3 x? L are undecidable (here K is the
unimodal logic of all frames, and K4.3 is the unimodal logic of linear orders). Some notable
consequences of these results are:

(i) K x°® S5 is undecidable, (while K x S5 is CONEXPTIME-complete [24], and even the
global consequence relation of K x S5 is decidable in CO2NEXPTIME [43, 33]).

(i) K4.3 x° S5 is undecidable (while K4.3 x S5 is decidable in 2EXPTIME [31]).



(iii) K x° K is undecidable (while K x K is decidable [8], though not in ELEMENTARY TTME
[13]).

See also Table 1 for some known results on product logics, and how our present results on
d-products compare with them.

While all the above d-product logics are recursively enumerable (Theorem 1), we also show
that in some cases decidable product logics can turn highly undecidable by adding a diagonal.
For instance, both K x% 85 and K x? K when restricted to finite (but unbounded) product
frames result in non-recursively enumerable logics (Theorem 3). Also, Logic of (w, <) x° S5
is I13-hard (Theorem 5). On the other hand, the unbounded width of the second-component
frames seems to be essential in obtaining these results. Adding a diagonal to decidable product
logics of the form K x Alt(n), S5 x Alt(n), and Alt(m) x Alt(n) results in decidable logics,
sometimes even with the same upper bounds that are known for the products (Theorems 6
and 7) (here Alt(n) is the unimodal logic of frames where each point has at most n successors
for some 0 < n < w).

Our undecidable d-product logics can also be viewed as new fragments of first-order logic
where adding equality changes a decidable fragment to undecidable. (A well-known such
fragment is the Godel class [11, 12].) In particular, consider the following ‘2D extension’
of the standard translation [9], from bimodal formulas to three-variable first-order formulas
having two free variables x and y and a built-in binary predicate R:

Pl := P(x,y), for propositional variables P,
(-¢) = =gl and (oA = oAyl
(Qoo)t := V2 (R(x,2) = ¢'(2/2,y)),
(C19)" = Yz (R(y, 2) = ¢ (2, 2/y)).

It is straightforward to see that, for any bimodal formula ¢, ¢ is satisfiable in the (decidable)
modal product logic K x K iff ¢! is satisfiable in first-order logic. So the image of T is a
decidable fragment of first-order logic that becomes undecidable when equality is added.

Our results show that in many cases the presence of a single proposition (the diagonal)
with the ‘horizontal’ and ‘vertical’ uniqueness properties (1)—(2) is enough to cause undecid-
ability of 2D product logics. If each of the component logics has a difference operator, then
their product can express ‘horizontal’ and ‘vertical’ uniqueness of any proposition. For ex-
ample, this is the case when each component is either the unimodal logic Diff of all frames of
the form (W, #), or a logic determined by strict linear orders such as K4.3 or Logic_of (w, <).
So our Theorems 4 and 5 can be regarded as generalisations of the undecidability results of
[32] on ‘linear’x ‘linear’-type products, and those of [17] on ‘linear’ x Diff-type products.

On the proof methods. Even if 2D product structures are always grid-like by definition,
there are two issues one needs to deal with in order to encode grid-based complex problems
into them:

(i) to generate infinity, even when some component structure is not transitive, and

(ii) somehow to ‘access’ or ‘refer to’ neighbouring-grid points, even when there is no ‘next-
time’ operator in the language, and/or the component structures are transitive or even
universal.



validity of
product logic

global
consequence of
product logic

validity of
é-product logic

CONEXPTIME-complete same CONEXPTIME-

S5 x S5 [34, 28, 14, 24] as validity complete
34, 28, 14]

CONEXPTIME-complete decidable in undecidable

K x S5 [24] CO2NExpPTIME | Cor. 2
[43, 33]

decidable [8] undecidable
K xK not in ELEMENTARYTIME | undecidable [24] Cor. 1

13

decidable same undecidable
K4.3 x S5 in 2ExPTIME [31] as validity Cor. 3

CONEXPTIME-hard [24]

decidable same
K4 x S5 in CON2EXPTIME [8] as validity

CONEXPTIME-hard [24]

decidable [43] undecidable [15] | undecidable
K4 x K not in ELEMENTARYTIME Cor. 1

13
K4 x K4 undecidable [10] same undecidable
as validity Prop. 1

decidable decidable

KxAlt(n) || in CONEXPTIME (n > 1) | undecidable in CONEXPTIME

in EXPTIME (n = 1) [7]

Thm. 6

Table 1: Product vs.

d-product logics.




When both component structures are transitive, then (i) is not a problem. If in addition
component structures of arbitrarily large depths are available, then (ii) is usually solved by
‘diagonally’ encoding the w X w-grid, and then use reductions of tiling or Turing machine
problems [25, 32, 10]. When both components can express the uniqueness of any proposition
(like strict linear orders or the difference operator), then it is also possible to make direct
use of the grid-like nature of product structures and obtain undecidability by forcing reliable
counter machine computations [17]. However, d-product logics of the form L x°S5 apparently
neither can force such computations directly, nor they can diagonally encode the w x w-grid.
Instead, we prove our lower bound results by a novel application of counter machine problems.
The presence of a unique diagonal in the models makes it possible to encode both lossy and
insertion-error computations, for the same sequence of instructions. We then show (Prop. 3)
that, given such a pair of faulty computations, one can actually reconstruct a reliable run
from them. The upper bound results are shown by a straightforward selective filtration.

The structure of the paper is as follows. Section 2 provides all the necessary definitions.
In Section 3 we establish connections between our logics and other formalisms, and discuss
some consequences of these connections on the decision problem of §-products. In Section 4
we introduce counter machines, and discuss how reliable counter machine computations can
be approximated by faulty (lossy and insertion-error) ones. Then in Sections 5 and 6 we
state and prove our undecidability results on d-products having a K or a ‘linear’ component,
respectively. The decidability results are proved in Section 7. Finally, in Section 8 we discuss
some related open problems.

2 )-product logics

In what follows we assume that the reader is familiar with the basic notions in modal logic
and its possible world semantics (see [3, 5] for reference). Below we summarise the necessary
notions and notation for our 3-modal case only, but we will use them throughout for the uni-
and bimodal cases as well. We define our formulas by the following grammar:

¢:= P[0 |dAY|Dre|Oug,

where P ranges over an infinite set of propositional variables. We use the usual abbreviations
V, =, &, L:=P AP, &; :=-0;-, and also

Ord = ¢V O, OF ¢ := ¢ A Do,

for ¢ = h,v. (The subscripts are indicative of the 2D intuition: h for ‘horizontal’ and v for
‘vertical’.)

A o-frame is a tuple § = (W, Ry, Ry, D) where R; are binary relations on the non-empty
set W, and D is a subset of W. We call § rooted if there is some w such that wR*v for all
v € W, for the reflexive and transitive closure R* of R := R, U R,. A model based on § is a
pair 9 = (F,v), where v is a function mapping propositional variables to subsets of W. The
truth relation M, w = ¢ is defined, for all w € W, by induction on ¢ as usual. In particular,

MwpE-s iff weD.

We say that ¢ is satisfied in O, if there is w € W with M, w | ¢. We write M = ¢, if
M, w = ¢ for every w € W. Given a set L of formulas, we write 9 = L if M |= ¢ for every



¢ in L. Given formulas ¢ and 1, we write ¢ =7 ¢ iff M |= 4 for every model M such that
M= LU{op}.

We say that ¢ is valid in §, if MM = ¢ for every model 9 based on §. If every formula in
a set L is valid in §, then we say that § is a frame for L. We let Fr L denote the class of all
frames for L. For any class C of §-frames, we let

Logic_of C := {¢ : ¢ is a formula valid in every member of C}.

We call a set L of formulas a Kripke complete logic if L = Logic_of C for some class C. A
Kripke complete logic L such that for all formulas ¢ and v, ¢ =} ¢ iff M |= ¢ implies M =
for every model 9 based on a frame for L, is called globally Kripke complete.

We are interested in some special ‘two-dimensional’ §-frames. Given unimodal Kripke
frames §, = (Wy, Rp) and §, = (W, Ry), their product is the bimodal frame

Sh X SU = <Wh X anﬁh7§v>a

where W}, x W, is the Cartesian product of sets W), and W, and the binary relations Rj, and
R, are defined by taking, for all z, 2’ € Wy, y,vy' € W,,

(x,y)Rp(z’,y/) iff xRz’ andy=1y/,
(x,)R,(z',y) iff yR,y andx =2

The é-product of §j, and §, is the J-frame
Fn x° Fo = (Wy x Wy, Ry, Ry, id),
where (W), x Wy, Rp,, Ry) = §n X Fo» and
id={(z,z) : x € W N W, }.
For classes Cp, and C, of unimodal frames, we define
Cr x°Cy = {Fn x° Ty : §i € Ci, for i = h,v}.

Now, for ¢ = h,v, let L; be a Kripke complete unimodal logic in the language with <;. The
6-product of Ly and L, is defined as

Ly, x° L, = Logic_of (Fr L, x° Fr L,,).

As a generalisation of the modal approximation of two-variable first-order logic, it might be
more ‘faithful’ to consider
Ly, xgq Ly, :={¢ : ¢ is valid in §), x° §,, for some rooted F; = (W;, R;)
in Fr L;, i = h,v, such that Wy, = W, },

or, in case Ly, = L, = L, even
L xgqu = {¢: ¢ is valid in § x° §, for some rooted F € Fr L}.

Then S5 ng S5 =S5 x‘;qf S5 indeed corresponds to the transposition-free fragment of two-
1

variable first-order logic. However, S5 x% S5 is properly contained in S5 x 5q 55 for instance



<&, belongs to the latter but not to the former. In general, clearly we always have Lj, x° L, C
Ly, xquv and L x‘qu CL x‘gqu, whenever Ly, = L, = L. Also, it is not hard to give examples
when the three definitions result in three different logics. Throughout, we formulate all our
results for the Lj, x° L, cases only, but each and every of them holds for the corresponding
Ly xgq L, as well (and also for L ><‘2qu when it is meaningful to consider the same L as both
components).

Given a set L of formulas, we are interested in the following decision problems:

L-vALIDITY: Given a formula ¢, does it belong to L?

If this problem is (un)decidable, we simply say that ‘L is (un)decidable’. L-validity is the
‘dual’ of

L-SATISFIABILITY: Given a formula ¢, is there a model 9t such that 9t = L and ¢ is satisfied
in 97
Clearly, if L = Logic_of C then L-satisfiability is the same as

C-SATISFIABILITY: Given a formula ¢, is there a frame § € C such that ¢ is satisfied in a
model based on §?

We also consider

GLOBAL L-CONSEQUENCE: Given formulas ¢ and 1, does ¢ =} 9 hold?

Notation. Our notation is mostly standard. In particular, we denote by R™ the reflezive
closure of a binary relation R. The cardinality of a set X is denoted by | X|. For each natural
number k < w, we also consider k as the finite ordinal k¥ = {0,...,k — 1}.

3 Decidability of /-products: what to expect?

To begin with, the following proposition is straightforward from the definitions:
Proposition 1. Ly, x° L, is always a conservative extension of Ly, X L.

So it follows from the undecidability results of [10] on the corresponding product logics
that Lj, X% L, is undecidable, whenever both Lj; and L, have only transitive frames and have
frames of arbitrarily large depths. For example, K4 x° K4 is undecidable, where K4 is the
unimodal logic of all transitive frames.

Next, we establish connections between the global consequence relation of some product
logics and the corresponding é-products. To begin with, we introduce an operation on frames
that we call disjoint union with a spy-point. Given unimodal frames §; = (W;, R;), i € I, for
some index set I, and a fresh point r, we let

U Sl = <W7 R>7
i€l
where

W={r}U{{w,i):i €I, weW;}, and
R = {<r, <w,i>>:wEWi, iGI}U{<<w,i>,<w/,i>>:w,w'EVVi, wRw', iEI}.

Note that the spy-point technique is well-known in hybrid logic [4].



Proposition 2. If Ly and L, are Kripke complete logics such that both Fr Ly and Fr L, are
closed under the ‘disjoint union with a spy-point’ operation and Ly x L, is globally Kripke
complete, then the global Ly, x Ly,-consequence is reducible to Ly, x° Ly-validity.

Proof. We show that for all bimodal (d-free) formulas ¢, v,
¢ FEluxe, ¥ M ((univ’ ADR0,0) = 0,0,9) € Ly x° Ly,

where
univ? := 0,00 A 0,0,0,0 A OpyOpd A Oy 0, 0.

=: Suppose that M, (1, 7,) = univ® A Op0,0 A OOyt in a model M that is based on
Fh %O Sv, for some frames §; = (W;, R;) in Fr L;, i = h,v. Then there exist xj, x, such that
raRpzh, Ty Ryxy and M, (zp, x,) E . For ¢ = h, v, let &; be the subframe of §; generated
by point x;, and let 91 be the restriction of 9 to &; x &,. Then

NELy,x L, and N, (xp,xy) = . (3)

We claim that
r; R;w, for all w in &; and ¢ = h, v. (4)

Indeed, let ¢ = h. We prove (4) by induction on the smallest number n of Rj-steps needed
to access w from zp,. If n =0 then we have r, Rpz,. Now suppose inductively that (4) holds
for all w in &), that are accessible in < n Rj,-steps from zj, for some n < w, and let w’ be
accessible in n + 1 Rp-steps. Then there is w in &, that is accessible in n steps and wRpw’.
Thus thhw by the IH, and so 0, (w',r,) = <, by univ®. Therefore, we have w’ € W, and
ryRyw’. Then M, (r,, w') | <Opd again by un|v5, and so r,Rpw’ as required. The ¢ = v case
is similar.

Now it follows from D, (rp, ry) = Op0,¢ and (4) that 91 | ¢. Therefore, ¢ #7 . ; ¥ by
(3).

<: Suppose that M = ¢ and M, w = —) in some model M with M = L, x L,. As
Ly x L, is globally Kripke complete, we may assume that 9 = (§p, X §y, u) for some frames
§i = (Wi, R;) in FrL;, i = i,h. Let §, a < |W,|, be |W,|-many copies of §j, and 35,
B < |Wh|, be |W}|-many copies of §,. Take some fresh point r and define

&1, = (Un, Sh) : U I and &, =(Us,S) U 3.
a<|Wy| B<|Wh|

Then by our assumption, &; is a frame for L;, for i = h,v. Define a model 91 := (&, X0 B,, v)
by taking, for all propositional variables P,

v(P) = {({z, @), (y,8)) : (z,y) € u(P)}.

Then N, (r,7) E Op0yp A OpOy—p. As |Up| = |U,| and Fr L; is closed under isomorphic
copies for i = h, v, we can actually assume that U, = U,, and so 0N, (r, ) = univ®. O

Corollary 1. K x% K and K x% K4 are both undecidable.



Proof. Tt is not hard to check that the 2D product logics K x K and K x K4 satisfy the
requirements in Prop. 2 (cf. [7, Thm.5.12] for global Kripke completeness). A reduction of,
say, the w x w-tiling problem [2] shows that global K x K-consequence is undecidable [24],
and so the undecidability of K x° K follows by Prop. 2. It is shown in [15] that the reduction
of K4 to global K-consequence [40] can be ‘lifted’ to the product level, and so K4 x K4 is
reducible to global K x K4-consequence. Therefore, the latter is undecidable [10], and so the
undecidability of K x? K4 follows by Prop. 2. O

Note that we can also make Prop. 2 work for logics having only refiexive frames by making
the ‘spy-point’ reflexive, and using a slightly different ‘translation’:

¢ FLyxL, v i

((univ® A OxP A OuP A Op0,(=P — ¢) — Ox0,(=P — ¢)) € Ly x° Ly,

where P is a fresh propositional variable.

However, logics having only symmetric frames (like S5), or having only frames with
bounded width (like K4.3 or Alt(n)) are not closed under the ‘disjoint union with a spy-
point’ operation, and so Prop. 2 does not apply to their products. It turns out that in some of
these cases such a reduction is either not useful in establishing undecidability of J-products,
or does not even exist. While global K x S5-consequence is reducible to PDL x S5-validity®,
and so decidable in CO2NEXPTIME [43, 33], K x% S5 is shown to be undecidable in The-
orem 2 below. While K x% Alt(n) is decidable by Theorem 6 below, the undecidability of
global K x Alt(n)-consequence can again be shown by a straightforward reduction of the
w X w-tiling problem.

Finally, the following general result is a straightforward generalisation of the similar the-
orem of [8] on product logics. It is an easy consequence of the recursive enumerability of the
consequence relation of (many-sorted) first-order logic:

Theorem 1. If Ly and L, are Kripke complete logics such that both Fr Ly and Fr L, are
recursively first-order definable in the language having a binary predicate symbol, then Ly, x° L,
is recursively enumerable.

4 Reliable counter machines and faulty approximations

A Minsky [27] or counter machine M is described by a finite set @ of states, an initial state
Gini € @, a set H C @ of terminal states, a finite set C' = {cp,...,cny—1} of counters with
N > 1, a finite nonempty set I, C Ops x @ of instructions, for each ¢ € () — H, where each
operation in Op is one of the following forms, for some ¢ < N:

.t

increment counter ¢; by one),

-~ (decrement counter c¢; by one),

® C

o c7 (test whether counter c; is empty).

'Here PDL denotes Propositional Dynamic Logic.



For each o € Op, we will consider three different kinds of semantics: reliable (as described
above), lossy [26] (when counters can spontaneously decrease, both before and after perform-
ing «), and insertion-error [29] (when counters can spontaneously increase, both before and
after performing a).

A configuration of M is a tuple (q,¢) with ¢ € @ representing the current state, and
an N-tuple @ = (cg,...,cy—1) of natural numbers representing the current contents of the
counters. Given o € Ope, we say that there is a reliable a-step between configurations (g, ¢)
and (¢, c’) (written (g,c) —*(¢,c")) iff (o, ¢') € I, and

° ifazcj*thencgzci+1andc;:cjforj;éi,j<N;
° ifa:c;fthenc;:ci—landc;:cjforj#i,j<N;
. ifoz:cz?thenc;:cz-:()andc;:cjforj<N.

We say that there is a lossy a-step between configurations (q,¢) and (¢’,¢’) (and we write
(¢, C) —ipssy(d’ ¢")) M (a,¢') € 15 and

° ifazcj*thencg§ci+1andc;§cjf0rj7éi,j<N;
o if a=c; " then ¢ <¢;—1and ¢ <¢jfor j #1, j < N;
. ifa:cg?thenc;:Oandcg-Scjforj<N.

Finally, we say that there is an insertion-error a-step between configurations (g, ¢) and (¢, ¢’)
(written (q,¢) —¢,,..(¢',¢")) iff (o, ¢) € I; and

i_err

. ifa:cj*thencgzci—l—landc;zcjforj#i7j<N;
o if a=c; " then ¢ > ¢; — 1 and ¢ > ¢j for j #1, j < N;
° ifa:cz?thencl-:Oandc;zcjforj<N.

Now suppose that a sequence 7 = <<an, n) : 0 <n < B> of instructions of M is given for
some 0 < B < w. We say that a sequence g = ((g,,c(n)) : n < B) of configurations is a
reliable T-run of M if

(i) g0 = Gini, (0) = 0, and
(i) (gn-1,¢(n — 1)) = (g, c(n)) holds for every 0 < n < B.

A reliable run is a reliable 7-run for some 7. Similarly, a sequence g satisfying (i) is called
a lossy T-run if we have (gn—1,¢(n — 1)) =3 (gn, c(n)), and an insertion-error 7-run if we
have (gn—1,¢(n—1)) =" (gn,c(n)), for every 0 < n < B. (Note that in order to simplify the
presentation, in each case we only consider runs that start at state g, with all-zero counters.)

Observe that, for any given 7, if there exists a reliable 7-run, then it is unique. The follow-
ing statement says that this unique reliable 7-run can be ‘approximated’ by a (lossy, insertion-

error)-pair of 7-runs:

Proposition 3. (faulty approximation)
Given any sequence T of instructions, there exists a reliable T-run iff there exist both lossy
and insertion-error T-runs.
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Proof. The = direction is obvious, as each reliable 7-run is both a lossy and an insertion-error
7-run as well. For the < direction, suppose that 7 = <(ozn, n) 10 <n< B> for some B < w,
({gn,c°(n)) : n < B) is a lossy 7-run, and ((g,,¢*(n)) : n < B) is an insertion-error 7-run.
We claim that there is a sequence (¢(n) : n < B) of N-tuples of natural numbers such that,
for every n < B,

(a) ¢;(n) < ci(n) < cf(n) for every i < N,
(b) if n > 0 then (gp—1,¢c(n — 1)) = {(gn, c(n)).

It would follow that ((gn,&(n)) : n < B) is a reliable 7-run as required.

We prove the claim by induction on n. To begin with, we let #0) := 0. Now suppose that
(a) and (b) hold for all k¥ < n for some n with 0 < n < B. For each i < N, we let
cln—1)+1, ifa,=c¢",
ci(n):=1¢ ¢n—1)—1, ifa, =¢;
ci(n —1), if a, = ¢!’ or ay, € {c;rJr,cj**,c;?} for j # 1.

We need to check that (a) and (b) hold for n. There are several cases, depending on
an. If a, = ¢}7 then, by (g,_1,8°(n — 1)) = sy (@n, €°(n)), the IH(a), and (gn—1,¢%(n —
1)) =9 {qn,c*(n)), we have

i_err

ci(n) <cj(n—1) <cj(n—1)=cj(n) <cj(n—1) <cj(n) forall j#i.

Also, ¢?(n—1) =0 by (gn—1,¢*(n—1)) =" (gn,c*(n)). So by the IH(a), we have ¢;(n—1) =
0, and so ¢j(n) = 0 and (gn—1,(n — 1)) =" (gn, €(n)). As (gn-1,¢°(n—1)) =L (g0, c°(n)),
we have ¢f(n) = 0. Thus ¢} (n) = ¢;(n) = cf(n—1) =0 < ¢f(n), as required. The other cases

are straightforward and left to the reader. O

In each of our lower bound proofs we will use ‘faulty approximation’, together with one
of the following problems on reliable counter machine runs:

CM NON-TERMINATION: (II9-hard [27])

Given a counter machine M, does M have an infinite reliable run?
CM REACHABILITY: (X9-hard [27])

Given a counter machine M, and a state ¢f,, does M have a reliable run reaching gsin?

CM RECURRENCE: (¥i-hard [1])

Given a counter machine M and a state ¢, does M have a reliable run that visits ¢, infinitely
often?

5 Undecidable é-products with a K-component
For each 0 < k < w, we call any frame (k, R) a k-fan if
{{(0,n): 0<n <k} CR. (5)

Theorem 2. Let L be any Kripke complete logic having an w-fan among its frames. Then
K x° L is undecidable.
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Corollary 2. K x? S5 is undecidable.

We prove Theorem 2 by reducing the ‘CM non-termination’ problem to Ly, x L,-satisfiability.
Let 9t be a model based on the é-product of some frame §, = (Wy, Rp,) in Fr Lj, and some
frame §, = (W,, Ry) in Fr L,. First, we generate an w x w-grid in M. Let grid be the
conjunction of the formulas

Dj<>h5, (6)
Op <00 (Ond A Op0). (7)

Claim 2.1. (grid generation)
If M, (rp, ry) = grid then there exist points (xn, € Wi, N Wy, : n < w) such that, for alln < w,

(i) rnRpzn,
(ii

(iii
1

)
) xo =71y, and if n > 0 then zoR,xy,,

) if n > 0 then z,—1 Rpxy,

(iv) if n > 0 then x, is the only Rp-successor of x,_1.

(We do not claim that all the x,, are distinct.)

Proof. By induction on n. Let zp := 7,. Then (i) holds by (6). Now suppose inductively
that we have (xp : k < n) satisfying (i)—(iv) for some 0 < n < w. Then by (7), there is
xn € Wy, such that zgR,z, and M, (x,,—1,x,) E Opd A Opd. Therefore, x, € Wh, xp—1Rpxy,
and x,, is the only Rp-successor of x,_1. By (6), M, (rp, z,) E Opd. So rpRpx, follows, as
required. ]

Observe that because of Claim 2.1(iii) and (iv), Oy, in fact expresses ‘horizontal next-time’
in our grid. For any formula ¢ and any w € W,,

M, (@, w) = Opth it M (xpy1,w) Ep, foralln <w. (8)

Using this, we will force a pair of infinite lossy and insertion-error 7-runs, for the same
sequence T of instructions. Given any counter machine M, for each i < N of its counters,
we take two fresh propositional variables C; and C?. At each moment n of time, the actual
content of counter ¢; during the lossy run will be represented by the set of points

Y2 (n) = {w € W, : ;o Rfw and M, (z,,,w) = C},
and during the insertion-error run by the set of points
Y2 (n) == {w € W, : 2oRfw and M, (x,,,w) = C}.

For each i < N, the following formulas force the possible changes in the counters during the
lossy and insertion-error runs, respectively:

fix} .= OF(0,C0 — C?),
incy := O/ (0,C) — (C5 V4)),
dec? := OF(0,C) — C) A O (CY A O,—CY),

12



and

fix} .= OF(C? — 0,C?),
inc! := O (CP — 0,C) A O (=C A DOLCY),
dect := O} (C? — (0,CF V 6)).

Claim 2.2. (lossy and insertion-error counting)
Suppose that M, (ry, ry) = grid. Then for alln < w and i < N:

(1) If m7 T, X0 ': ﬁXS then Ef(n + 1) - Zf(n)

(i) If M, (zp, z0) = inc] then X9(n+ 1) C X2(n) U {xy}.

{@n, o)
) {@n, o)
(iif) If M, (wn, w0) k= dec] then X3 (n +1)C £2(n) — {2} for some z € 59 (n).
(iv) If M, (mn, w0) = fix? then Xf(n +1) 2 2 (n).
) )

(v) If M, (zp, o) = inc? then there is z such that xoRfz, z ¢ X2(n), and X(n+1) D
27 (n) U{z}.

(vi) If M, (xp, x0) = decj then X3 (n+1) D Xf(n) — {zn}.

Proof. We show items (ii) and(v). The proofs of the other items are similar and left to the
reader.

(ii): Suppose w € ¥9(n + 1). Then zoR}fw and M, (z,11,w) = C;. By (8), we have
M, (zp, w) = OxC7. Therefore, M, (x,,w) = C7 Vo by inc, and so either w € X9(n) or
W = Tp.

(v): By inc?, there is z with zoR; z and M, (z,,, z) = —C? AO,CS. Thus z ¢ X2 (n). Also,
we have M, (z,41,2) = C? by (8), and so z € X3(n + 1). Now suppose w € X7 (n). Then
zoRw and M, (x,,, w) = C?. By inc?, we have M, (x,,, w) = O,C?. Thus M, (2,41, w) = C?
by (8), and so w € X% (n +1). O

Using the above counting machinery, we can encode lossy and insertion-error steps. For
each a € Opq, we define

inc; A /\ fix3, ifa=c'T,
i£j<N
do°(a) := dec; A /\ fix3, ifa=c ~,
i#j<N
0 0,—C5 A /\ fixg, if a=cl",
i£j<N
and
inc; A /\ fix3, ifa=c'",
i£j<N
dO.(Oé) — dec; A /\ ﬁX;, if = Ci__7
iAj<N
Or-Co A A\ st ifa=cl
\ 1Fj<N
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Now we can force runs of M that start at ¢,; with all-zero counters. For each state ¢ € @,
we introduce a fresh propositional variable S,, and define

Se=S¢A N\ ~Sq. (9)
q#q'€Q
Let s be the conjunction of
Dh(é — (/S\(Iini A Dj(—'Cf AN _'Cz.))>7 (10)
o, N\ (§q » (@5, Ado®(a) A do‘(a))), (11)
qeEQ—H (a,q')EI4
o, \/ S (12)

q€Q—H

Lemma 2.3. (lossy and insertion-error run-emulation)
Suppose that M, (rp, ) = grid A oar. Let qo := gini, and for alli < N, n < w, let ¢§(n) =
2(n)] and

G

(n) = { ct(n—1)+1, if £(n) is infinite,

|22 (n)], otherwise.
Then there exists an infinite sequence T = <<an, n) 0 <n< w> of instructions such that
e ((gn,€°(n)) :n <w) is a lossy T-run of M, and
e ((gn,C%(n)) : n <w) is an insertion-error T-run of M.
Proof. We define <<ozn, n) 0 <n< w> by induction on n such that for all 0 < n < w,
e g, € Q— H and M, (z,, x0) = §qn,
® (Gn-1,€°(n — 1)) =i (an, €°(n)) and (gn-1,¢°(n — 1)) 53¢, (qn, €*(n)).

As @°(0) = @*(0) = 0 by (10), the lemma will follow.

To this end, take some n with 0 < n < w. Then we have ¢,,—1 € Q—H and M, (z,,—1, z0) =
/S\qnfl, by (10) and (12) if n = 1, and by the IH if n > 1. Therefore, by Claim 2.1(i) and
(11), there is (an,qn) € Ig, , such that M, (x,—1,z0) = Dh/S\q" A do®(ay,) A do®(ay,). So
M, (xn, o) E gqn by Claim 2.1(iii), and so ¢, € Q — H by Claim 2.1(i) and (12). Using
Claim 2.2(1)-(iii), it is easy to check that (g,—1,¢°(n—1)) =3 (gn,¢°(n)). Finally, in order
to show that (gn,—1,¢*(n — 1)) =77 (gn,c*(n)), we need to use Claim 2.2(iv)—(vi) and the
following observation. As for each i < N either X (n —1) is infinite or ¢§(n—1) = |X3(n—1)],
if ¢?(n—1) # 0 then X(n — 1) # (), and so ay, # c,’ follows by M, (z,_1, 7o) = do*(av,). O

For each k < w, let $; be the frame obtained from (k,+1) by adding a ‘spy-point’, that
is, let $ := (k+ 1, Sk), where

Sp={(k,n) :n<k}U{{n—1,n):0<n<k}. (13)

Lemma 2.4. (soundness)
If M has an infinite reliable run, then grid A oy is satisfiable in a model over $H., x° § for
some w-fan §.
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Proof. Suppose that <<qn,é’(n)> in < w> is a reliable 7-run of M, for some sequence 7 =
<<an, Gn) 0 <n< w> of instructions. We define a model Mo, = (9., X0, w) as follows. For
each g € @), we let

1(Sq) == {(n,0) : n < w, gn = q}.
Further, for all i < N, n < w, we will define inductively the sets j,,(C?) and p1,,(C?), and then
put

w(C7) = {{n,m) : m € pn(C7)} and u(C7) := {{n,m) : m € pn(C7)}.
To begin with, we let uo(C9) = uo(C?) := 0, and

pn(C9) U {n}, if apy1 = c;r+,
lu“7L+1(C(Z?) = Mn(cf) - {min Mn(cg)}> if apq1 = C s
pn (C3), otherwise.

It is straightforward to check that
| (C3)| = ci(n) and Mo, (n,0) = do®(apy1), foralli< N, n<w. (14)

We need to be a bit more careful when defining 1, (C?). As the formulas do®(a,,) permit
decrementing the insertion-error counters only at diagonal points, we must be sure that only
previously incremented points get decremented. To this end, for every ¢ < N, we let

ANi={k<w:ogpq=c "}, Ei={k<w:iag=c¢ "} (15)

and let
(Al :m < L;) be the enumeration of A; in ascending order, and (16)
(¢! m < K;) be the enumeration of Z; in ascending order, (17)

for some L;, K; < w. As in a run only non-zero counters can be decremented and our run is
reliable, we always have L; < Kj;, and A}, > &, for all m < L;. Then we let

( Mn(c;)u{)‘in}ﬂ if a1 :Cz—‘H_a n:gnv
m < L,
o\ ._ Mn(CZ)U{min(w—Mn(Cz’))}7 if a1 :Cz—‘H_y n:gnv
:un-i-l(ci) E Li<m< Kiv
pn(C) = {n}, if a1 =¢; 7,
[ 1 (C)), otherwise.

We claim that if a1 = ¢; ~ then n € 1, (C?), and so [pn+1(C?)| = [1a(CF)| — 1. Indeed,
if apt1 = ¢;~ then n = X\{, for some m < L;. So pei 11(CF) = pe: (CF) U {Ai} and so
n € pgi 11(CP). It follows that n € pu(CP) for every k with &, +1 <k <n+ 1, as required.

Now it is not hard to see that |1, (C?)| = ¢;(n) and Moo, (n,0) = do®(ap41), for alli < N
and n < w. Using this and (14), it is easy to check that M, (w,0) = grid A par. O

Now Theorem 2 follows from Prop. 3, Lemmas 2.3 and 2.4.

Note that it is easy to generalise the proof to obtain undecidability of T x° L (where T is
the unimodal logic of all reflexive frames), by using a version of the ‘tick-’ or ‘chessboard’-trick
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(see e.g. [39, 32, 10] for more details): Take a fresh propositional variable tick, and define a
new ‘horizontal’ modal operator by setting, for all formulas ¢,

W, ¢ = (tick — Op,(—tick = ¢)) A (—tick — Op(tick — ¢)). (18)
Then replace each occurrence of Oy in the formula grid A s with By, and add the conjunct
Op ((tick <» Oytick) A (—tick «» O, tick)). (19)

It is not hard to check that the resulting formula is T x° L-satisfiable iff M has an infinite
reliable run.
Next, recall k-fans from (5), and the frames ), from (13).

Theorem 3. Let Cp, and C, be any classes of frames such that

o cither Cp or C, contains only finite frames,

e cither 9, € C, or Hi € Cy, for every k < w,

e cither C, contains an w-fan, or C, contains a k-fan for every k < w.
Then Logic_of (Cj, x° C,) is not recursively enumerable.

Proof. We sketch how to modify the proof of Theorem 2 to obtain a reduction of the ‘CM
reachability’ problem to Cj x° C,-satisfiability. To begin with, observe that if we add the
conjunct

O,0F (pV & — Op(p A —0)) (20)

to the formula grid defined in (6)—(7), then the grid-points z, generated in Claim 2.1 are
all different. Now we introduce a fresh propositional variable end, and let gridﬁ" be the
conjunction of (6), (20) and the following ‘finitary’ version of (7):

OpOu(end V (Or8 A Op6)). (21)
Given any counter machine M and a state g, let gof\i/?] be obtained from s by replacing
(12) with
O, \ S,
q€(Q—H)U{agsin}

It is not hard to see that grid/™ A @JX/}L A Op(Opend — §inn) is Cj, x? C,-satisfiable iff there is a
reliable run of M reaching gsip. ]

Note that it is also possible to give another proof of Theorem 2 by doing everything
‘backwards’. The conjunction of the following formulas generates a grid backwards in K x9 L-
frames, and is used in [22] to show that these logics lack the finite model property w.r.t. any
(not necessarily product) frames:

Oy o6 ATy L),
DU(Qh(S — <>h(ﬂ6 ApRd A Dhé)),
0;,$40.
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Then the conjunction of the following formulas emulates counter machine runs, again by going
backwards along the generated grid:

(B0 B B ),

Oy /\ <Oh§q — \/ (gq/ A bw_do®(a) A bw,do'(oz))),

qeQ—H (a,q)€Elq
o\ S
qeEQ—H
where
bw_inc; A /\ bw fix7, if a = cZ'H',
i#j<N
bw_do® (@) := bw_dec; A /\ bw fixj, ifa=c; ",
B i#£j<N
Of-Co A N\ bwfixg, if a=cl”,
i#j<N
bw_inci A /\ bw _fix?, if @ =cft,
i#j<N
bw_do®(a) = bw.dect A\ bw.fix?, if o =c; ",
B ’ iAj<N
0 0,—C? A /\ bw_fix}, if a =c]’,
i£j<N
bw_fix{ := O} (C; — 0,C9),
bw_inc§ := O (C; — (0,C5 v §)),
bw_dec? := O} (C? — 0,C0) A O (=CY A O,CY),
bw_fix} := O} (0,C — C?),
bw_inc! := O} (0,C! — C) A O (CP ADOL-CY),
bw_dec? := O (0,C — (C? Vv 4)),
for i < N.

6 Undecidable ¢-products with a ‘linear’ component

Theorem 4. Let Ly be any Kripke complete logic such that Ly, contains K4.3 and (w, <) is
a frame for Ly. Let L, be any Kripke complete logic having an w-fan among its frames. Then
Ly, x% L, is undecidable.

Corollary 3. K4.3 x° S5 and K4.3 x° K are both undecidable.

We prove Theorem 4 by reducing the ‘CM non-termination’ problem to Lj x° L,-satis-
fiability. Let 9t be a model based on the d-product of a frame §, = (W, Ry,) for Ly, (so Ry
is transitive and weakly connected?), and some frame §, = (W,, R,) for L,. First, we again
generate an w X w-grid in 9. Let

lingrid := 0 A O} O, (Opd A OO, -0).

%A relation R is called weakly connected if Vx,y, 2 (tRy A xRz — (y = z V yRz V 2Ry)).
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Claim 4.1. (grid generation)
If M, (rp,ry) = lingrid then there exist points (x, € Wi N W, : n < w) such that, for all
n<w,

(i

) xo =71y, and if n > 0 then zoRyxy,
(ii) if n > 0 then M, (xp_1,2n) = Opd A OO0,
)

(iii) if n > O then, for every z, x,—1Rpz implies that z = x,, or x,Rpz,

(iv) o =11, and xp Rpxzy, for all m < n.

Proof. By induction on n. Let zg := 7. As MM, (ry,r,) E 0, we have r, = r,. Now
suppose inductively that we have (z; : k < n) satisfying (i)—(iv) for some 0 < n < w. Then
there is x,, € W, such that zoR,x,, and M, (x,,—1,T,) = Opd AOROp—6. Therefore, x,, € W,
Tn_1Rpz,, and for every z, x,_1 Rpz implies that z = z,, or x, Rz, by the weak connectedness
of Ry. So by the IH and the transitivity of Ry, we have x,, Rpx, for all m < n. O

Next, given any counter machine M, we will again force both an infinite lossy and an
infinite insertion-error 7-run, for the same sequence 7 of instructions. As Ry, is transitive, we
do not have a general ‘horizontal next-time’ operator in our grid, like we had in (8). However,
because of Claim 4.1(iii) and (iv), we still can have the following: For any formula ) and any
w € Wy,

if ¢ is such that M, (x,4+1, w) | ¥ — Opp, then
M, (x, w) = Opp it M, (zpy1,w) E, foraln<w. (22)
In order to utilise this, for each counter ¢ < N of M, we introduce two pairs of propositional
variables: In7, Out; for emulating lossy behaviour, and In$, Out} for emulating insertion-error

behaviour. The following formula ensures that the condition in (22) hold for each of these
variables, at all the relevant points in 9:

&=\ OFOf((In§ — Oulng) A (Outy — 040uty)
i<N
A (In} — OylIn?) A (Out] — 0,0ut?)).

At each moment n of time, the actual content of counter ¢; during the lossy run will be
represented by the set of points

A (n) == {w € W, : zoRFw and M, (x,,, w) = InJ A =0utf},
and during the insertion-error run by the set of points
Al (n) :={w € W, : zoRFw and M, (x,,, w) = In§ A =Out?}.

For each i < N, the following formulas force the possible changes in the counters during the
lossy and insertion-error runs, respectively:
lin_fix? := O (OpIng — Ing),
lin_inc} := OF (OpIng = (In§ v §)),
lin_dec{ := O (TpIng — Ing) A OF (Ing A =Out? A O,0uty),

(2
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and
lin_fix} := O (0,0ut} — Out}),
lin_inc? := O (0,0ut} — Out?) A O (=In? A =Out? A OylIn?),
lin_decf := O/ (0,0ut] — (Outf V4)).

Claim 4.2. (lossy and insertion-error counting)
Suppose that M, (rp,ry) = lingrid A&pr. Then for alln < w, i < N:

(i) If M, (zp, o) = linfix{ then AS(n+ 1) C A2(n).
(ii) If O, (2, 20) = linsincS then A%(n+ 1) C A%(n) U {zn}.
i) If M, (zy, o
If M, (xn, xo

(

(iii

= lindec; then A (n+1)C A?(n) — {z} for some z € AY(n).

(iv = linfix} then AY(n+1) D Af(n).

) )

) )

) )

(v) If M, (xy, x0) = linZinc] then there is z such that zoRfz, z ¢ Al (n), and Af(n+1) D
A% (n)U{z}.

(vi) If M, (xp, x0) = lin_dec] then Af(n+1) DO AY(n) — {z,}.

Proof. We show items (iii) and (vi). The proofs of the other items are similar and left to the
reader.
(iii): By lin_decy, there is z such that zoR; z and

M, (zn, z) = Inj A =0ut; A O,0ut;.
So z € A?(n). Also, by Claim 4.1(iv),
M, (xpy1,2) = Out;. (23)

Now suppose w € Af(n + 1). Then zoRfw and M, (z,41,w) = Iny A =Out]. Then
M, (xn,w) = —Out] by &y and Claim 4.1(iv), and M, (xn, w) = Oplny by &y and (22).
So we have M, (z,,, w) = Inj by lin_dec, and so w € A(n). Finally, w # z by (23).

(vi): Suppose that w € A?(n) — {z,}. Then zoRfw and M, (x,, w) = In] A =Out] A —6.
Then M, (zp41,w) = Inf by £ and Claim 4.1(iv), and M, (z,, w) = —0,0ut] by lin_dec;.

Therefore, M, (xp41,w) = —Out] by &3 and (22), and so we have w € A (n+1). O
For each o € Op, we define
lin_inc; A /\ lin_fix?, if o =cT,
i£j<N
lin_do°(a) 1= lindec; A /\ lin_fix5, if o =c;,
i#j<N
O, (OpIn§ — O,0ut) A /\ linfix$, if o= ¢/,
iAj<N
and
( lin_inc! A /\ lin_fix?, if a = cZTH,
i#j<N
lin_do* (a) 1= lindec? A /\ lin_fix?, if a=c;,
iAj<N
O (Ing — Out?) A /\ linfix$, if a =c/".
iAj<N
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For each state ¢ € @, we introduce a fresh propositional variable S;, and define the formula

~

S, as in (9). Let ¢y be the conjunction of &) and the following formulas:

Sy A O (5Ing A =Out? A =lIng A =Out?), (24)
oF A [<>j§q Y (lin,do"(a) Alin_do® (@) A
qeEQ—H (o,q') €]y
D,j_ (<>h5 A Op0p=0 — Op(5 — /S\q/))>}, (25)
00—\ S (26)
qeEQ—H

Lemma 4.3. (lossy and insertion-error run-emulation)
Suppose that M, (rp,ry) = lingrid A ¥pr. Let qo := gini, and for all i < N, n < w, let
¢2(n) == |A%(n)| and

C

. ct(n—1)+1, if AS(n) is infinite,
i(n) = { |Af(n)], otherwise.
Then there exists an infinite sequence T = <<04n, qn) 0 <n< w> of instructions such that
e ((qn,C°(n)) :n <w) is a lossy T-run of M, and
e ((qn,C*(n)) : n <w) is an insertion-error T-run of M.
Proof. We define <<an, Gn) 0 <n< w> by induction on n such that for all 0 < n < w
e g, €Q— H and M, (x,,x,) E §qn,
® (an-1,¢°(n— 1)) = (an, €°(n)) and (gn_1,¢°(n — 1)) 57, (qn, €*(n)).

As @°(0) = @*(0) = 0 by (24), the lemma will follow.

To this end, take some n with 0 < n < w. Then we have g,—1 € Q—H and M, (x,_1,Tp—1) E
gn_1> by (24) and (26) if n = 1, and by the IH if n > 1. So by Claim 4.1(i), we have
M, (xp—1,T0) = Oqunﬂ. Thus by Claim 4.1(iv) and (25), there is (ap, ¢n) € Iy,_, such that
M, (p—1,20) = lin_do°(ay,) Alin_do®(a,,) and

wn)

M, (Zn-1,20) = O (Ond A Dp0,=8 — 0,(5 — Sy)). (27)

Now it is easy to check that (g,—1,¢°(n—1)) =3, (an, €°(n)) holds, using Claim 4.2(i)—(iii).
In order to show that (g,—1,¢*(n—1)) =" (gn,c*(n)), we need to use Claim 4.2(iv)—(vi) and
the following observation. As for each i < N either A?(n—1) is infinite or ¢! (n—1) = |A(n—
1)|,if c?(n—1) # 0 then A% (n—1) # 0, and so v, # ;" follows by M, (z,—1, 7o) = lin_do®(ay,).
Finally, we have M, (z,,, z,) E /S\qn by (27) and Claim 4.1(ii),(iv), and so ¢, € Q@ — H by
Claim 4.1(i),(iv) and (26). O

Lemma 4.4. (soundness)
If M has an infinite reliable run, then lingrid A ¥y is satisfiable in a model over (w, <) x° F
for some countably infinite one-step rooted frame 5.
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Proof. We may assume that § = (w,S) and {(0,n) : 0 < n < w} C S. Suppose that
{{gn,c(n)) : n < w) is a reliable run of M, for some sequence 7 = ({(an,qn) : 0 < n < w) of
instructions. We define a model

Noo = ((w, <) X F, )
as follows. For each g € @, we let
v(Sq) = {(n,n) :n <w, g, =q}.

Further, for all i < N, n < w, we will define inductively the sets v, (In7), v,(Outs), v,(Ing),
and v, (Out?), and then put

v(P) :={{n,m) :m € v,(P)},

for P € {In7, Outy, In?, Out} }. To begin with, we let vy(In7) = vo(Out;) = vp(In?) = 1p(Out?) :=
(), and

Ui (In9) = vn(In9) U {n}, if appr =¢ T,
P v (ng), otherwise,
oy . J vn(Out]) U {min(vy(Inf) =1, (Out)))}, if anyr =¢; 7,
vni1(Outy) == { vp(Outy), otherwise,
o J vpOut))U{n}, ifap=c
V1 (Out?) := { vp(Outy), otherwise.

Next, recall the notation introduced in (15)—(17). We let

vn(IN®) U {N ), if app1 =¢ft, n=¢,
m < L;,
Vne1(Inf) == ¢ vy (Inf) U {min(w — vp(Inf)) }, if oy =7+, n=¢,,
L; <m < Kj,
vn(Ing), otherwise.

We claim that if a1 = ¢; ~ then n € 1,(C}) = 1,41(C?), and so
[Vn41(InF) — vng1 (Out?)] = [ (In?) — v, (Out?)| — 1.

Indeed, if 41 = ¢; ~ then n = i, for some m < L;. So Vei 41(In) = v (In7) U {)\i }, and
son € v y1(Inf). It follows that n € vg(In?) for every k with € +1<k As ) > ¢ we
have n € v,(C?) as required.

Now it is not hard to check that

[vn(In?) — v (Outy)| = v (In7) — v, (Out?)| = ¢;(n)

and N, (n,0) = lin_do®(ay41) Alin_do®(a41), for all i < N and n < w, and so Ny, (0,0) E
lingrid A ¥py. O

Now Theorem 4 follows from Prop. 3, Lemmas 4.3 and 4.4.

In some cases, we can have stronger lower bounds than in Theorem 4. We call a frame
(W, R) modally discrete if it satisfies the following aspect of discreteness: there are no
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points xg, L1, ..., Tn, ..., Too in W such that zgRx1RxoR ... RepR. .. Rtoo, Tp # Tpy1 and
Too Ry, for all n < w. We denote by DisK4.3 the logic of all modally discrete linear
orders. Several well-known ‘linear’ modal logics are extensions of DisK4.3, for example,
Logic_of (w, <), Logic_of (w, <), GL.3 (the unimodal logic of all Noetherian® linear orders),
and Grz.3 (the unimodal logic of all Noetherian reflexive linear orders). Unlike ‘real’” dis-
creteness, modal discreteness can be captured by modal formulas, and each of the logics above
is finitely axiomatisable [35, 6].

Theorem 5. Let Ly, be any Kripke complete logic such that Ly contains DisK4.3 and (w, <)
is a frame for Ly. Let L, be any Kripke complete logic having an w-fan among its frames.
Then both Lj, x° L, and Ly, xgq L, are H% -hard.

Proof. We sketch how to modify the proof of Theorem 4 to obtain a reduction of the ‘CM
recurrence’ problem to Lj x° L,-satisfiability. Observe that by Claim 4.1(ii),(iv), the generated
grid-points z,, are such that x,, # z,11 for all n < w. Therefore, if 9 is a model based on a
é-product frame with a modally discrete ‘horizontal’ component and

M, (rp, o) = lingrid Ahps A OpOROL( A S,,)

for some state g, then by Claim 4.1(iii),(iv), for every n < w there is k such that n <k <w
and M, (zy, k) = Sq, - O

However, the formula lingrid is clearly not satisfiable when Lj; has only reflexive and/or
dense frames (like S4.3, the unimodal logic of all reflexive linear orders, or the unimodal
logic Logic_of (Q, <) over the rationals). It is not hard to see that a ‘linear’ version of the
‘tick-trick’ in (18)—(19) can be used to generalise the proof of Theorem 4 for these cases.
Further, as by Claim 4.1 the formula lingrid forces an infinite ascending chain of points, it is
not satisfiable when Lj; has only Noetherian frames (like GL.3 or Grz.3). Similarly to the
K-case in Section 5, it is also possible to generate an infinite grid and then emulate counter
machine runs by going backwards in linear frames, and so to extend Theorem 4 to Noetherian
cases. The interested reader should consult [17], where all these issues are addressed in detail.

7 Decidable é-products

The following theorem shows that the unbounded width of the second-component frames is
essential in obtaining the undecidability result of Theorem 2:

Theorem 6. L x° Alt(n) is decidable in CONEXPTIME, whenever L is K or Alt(m), for
0<nm<uw.

Proof. We prove the theorem for K x° Alt(n). The other cases are similar and left to the
reader. We show (by selective filtration) that if some formula ¢ does not belong to Kx? Alt(n),
then there exists a d-product frame for K x? Alt(n) whose size is exponential in ¢ where ¢
fails. It will also be clear that the presence or absence of the diagonal is irrelevant in our
argument.

To begin with, we let sub(¢) denote the set of all subformulas of ¢. For any ¢ € sub(¢),
we denote by hd(¢) the maximal number of nested ‘horizontal’ modal operators (<} and

3<W, R) is Noetherian if it contains no infinite ascending chains zoRx1Rz2R ... where z; # ;41 for i < w.
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Op) in 9. Similarly, vd(1) denotes the ‘vertical’ nesting depth of ¥. Now suppose that
M, (rp, mv) = ¢ in some model M that is based on the §-product of §, = (W, Rp,) and some
frame §, = (W,, R,) for Alt(n). (Note that with ¢ in our language it is possible to force
cycles in the component frames of a §-product, so we cannot assume that §j and §, are trees.)
For every k < vd(¢), we define

UF .= {y € W,, : there is a k-long R,-path from 7, to y}.
The UF are not necessarily disjoint sets for different k, but we always have
Uk <14n+n?+--+nF <14k nF (28)
Then we define Sﬁj = (W, R;> by taking

U R := R, N (W! x W/).
k<wvd(¢
Next, for every m < hd(¢), we define inductively U and ST as follows. We let U} := {r;}
and S)) := (). Now suppose inductively that we have defined U™ and S}" for some m < hd(¢).

For all z € U}, y € W/, and Opyp € sub(¢) with M, (x,y) = Optd, choose some zg 4 from
W), such that xRpzy . and M, (2,4 4, y) = 1. Then define

U = {2y 12 €U, y € W), Optp € sub(¢), M, (z,y) = Opip},
SZH_I = {<x7 zfl?;yﬂ/’> RS Uh RS Wz; Ohw S S’LLb<¢), m7 <.’L',y> ': <>h¢}

Again, the U} are not necessarily disjoint sets for different m, but by (28) we always have
that

U < (vd(@) - n**) - |sub(¢)[)™. (29)
Then we define §), : (Wh, R}) by taking

LJ Uy, LJ Sh'-

m<hd($) m<hd($)

Clearly, by (28) and (29) the size of §}, x° §,, is exponential in the size of ¢. Let 9 be the
restriction of 9 to F, x% F' . Now a straightforward induction on k, m and the structure of
formulas shows that for all & < vd(¢), m < hd(¢), ¢ € sub(¢),

M, (x,y) = i M (z,y) ¢,

whenever z € U™y € ULO™F hd(y) < m, and vd(v) < k. Tt follows that D, (ry, r,) b
¢, as required. ]

In certain cases the above proof gives polynomial upper bounds on the size of the falsifying
d-product model, so we have:

Theorem 7. The validity problems of both S5 x° Alt(1) and Alt(1) x° Alt(1) are CONP-
complete.

Note that all the above results hold with Alt(n) being replaced by its serial* version
DAIlt(n). One should simply make the ‘final’ points in the filtrated component frames reflex-
ive.

*A frame (W, R) is called serial, if for every  in W there is y with zRy.
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8 Open problems

We have shown that in many cases adding a diagonal to product logics results in a dramatic
increase in their computational complexity (Sections 5 and 6), while in other cases upper
bounds similar to diagonal-free product logics can be obtained (Section 7). Here are some
related open problems:

1. Theorems 4 and 5 do not apply when the first component logic has transitive but not
necessarily weakly connected (linear) frames. In particular, while K4 x S5 is decidable
in CON2EXPTIME [8], it is not known whether K4 x? S5 remains decidable. Note that
it is not clear either whether we could somehow use Theorem 2 here, that is, whether
K x% 85 could be reduced to K4 x° S5. Note that the reduction of [13] from K x L
to K4 x L uses that K x L is determined by product frames having intransitive trees
as first components, and this is no longer true for K x° L. As is shown in Lemma 2.4
and Claim 2.1, the formula grid defined in (6)—(7) is satisfiable in a d-product frame for
K x° L, but forces a ‘horizontal’ non-tree structure.

2. By the above, K x° K is properly contained in
Logic_of (‘Intransitive trees’ x° ‘Intransitive trees’),

and Theorem 2 does not imply the undecidability of the latter. Is this logic decidable?
Note that it is not clear either whether the selective filtration proof of Theorem 6 could
be used here, as both component frames could be of arbitrary width. However, it might
be possible to generalise one of the several proofs showing the decidability of K x K
8, 7].

3. It can be proved using 2D type-structures called quasimodels that the diagonal-free
product logic K x Alt(1) is decidable in EXPTIME [7, Thm.6.6]. Is K x? Alt(1) also
decidable in EXPTIME?

4. While dé-product logics are determined by J-product frames by definition, there exist
other (non-product, ‘abstract’) d-frames for these logics. The finite frame problem of
a logic L asks: “Given a finite frame, is it a frame for L?” If a logic L is finitely
axiomatisable, then its finite frame problem is of course decidable: one just has to
check whether the finitely many axioms hold in the finite frame in question. However,
as is shown in [19], many é-product logics (K x% K and K x° K4 among them) are not
finitely axiomatisable. So the decidability of the finite frame problem is open for these
logics. Note that if every finite frame for, say, K x? K were the p-morphic image of a
finite d-product frame, then we could enumerate finite frames for K x° K. As K x% K
is recursively enumerable by Theorem 1, we can always enumerate those finite J-frames
that are not frames for K x° K. So this would provide us with a decision algorithm for
the finite frame problem of K x? K. However, consider the d-frame § = (W, Ry, Ry, D),
where

W= {ay, 2, D={z},
Ry = {<$7$>7 <y,y>, <Z7 Z>’ <ya Z>a <Za $>, <y,x>},
R, = {<x,x>, <y7y>’ <Z’ Z>’ <$7 Z>) (Z’y>’ <:C, y>}

Then it is easy to see that § is a p-morphic image of (w, <) x% (w <), but § is not a
p-morphic image of any finite d-product frame.
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