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Abstract

In the propositional modal (and algebraic) treatment of two-variable first-order logic
equality is modelled by a ‘diagonal’ constant, interpreted in square products of universal
frames as the identity (also known as the ‘diagonal’) relation. Here we study the decision
problem of products of two arbitrary modal logics equipped with such a diagonal. As
the presence or absence of equality in two-variable first-order logic does not influence
the complexity of its satisfiability problem, one might expect that adding a diagonal
to product logics in general is similarly harmless. We show that this is far from being
the case, and there can be quite a big jump in complexity, even from decidable to the
highly undecidable. Our undecidable logics can also be viewed as new fragments of first-
order logic where adding equality changes a decidable fragment to undecidable. We prove
our results by a novel application of counter machine problems. While our formalism
apparently cannot force reliable counter machine computations directly, the presence of a
unique diagonal in the models makes it possible to encode both lossy and insertion-error
computations, for the same sequence of instructions. We show that, given such a pair of
faulty computations, it is then possible to reconstruct a reliable run from them.

1 Introduction

It is well-known that the first-order quantifier ∀x can be considered as an ‘S5-box’: a propo-
sitional modal 2-operator interpreted over universal frames (that is, relational structures
〈W,R〉 where R = W ×W ). The so-called ‘standard translation’, mapping modal formulas
to first-order ones, establishes a validity preserving, bijective connection between the modal
logic S5 and the one-variable fragment of classical first-order logic [42]. The idea of gener-
alising such a propositional approach to full first-order logic was suggested and thoroughly
investigated both in modal setting [30, 20, 41], and in algebraic logic [16, 18]. In particular,
the bimodal logic S5×S5 over two-dimensional (2D) squares of universal frames corresponds
to the equality and substitution free fragment of two-variable first-order logic, via a trans-
lation that maps propositional variables P to binary predicates P(x, y), the modal boxes 20

and 21 to the first-order quantifiers ∀x and ∀y, and the Boolean connectives to themselves.
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In this setting, equality between the two first-order variables can be modally ‘represented’ by
extending the bimodal language with a constant δ, interpreted in square frames with universe
W ×W as the diagonal set

{〈x, x〉 : x ∈W}.

The resulting modal logic (algebraically, representable 2D cylindric algebras [18]) is now
closer to the full two-variable fragment (though P(y, x)-like transposition of variables is still
not expressible in it). The generalisation of the modal treatment of full two-variable first-order
logic to products of two arbitrary modal logics equipped with a diagonal constant (together
with modal operators ‘simulating’ the substitution and transposition of first-order variables)
was suggested in [36, 37]. The product construction as a general combination method on
modal logics was introduced in [8], and has been extensively studied ever since (see [7, 21]
for surveys and references). Two-dimensional product logics can not only be regarded as
generalisations of the first-order quantifiers [23], but they are also connected to several other
logical formalisms, such as the one-variable fragment of modal and temporal logics, modal and
temporal description logics, and spatio-temporal logics. At first sight, the diagonal constant
can only be meaningfully used in applications where the domains of the two component
frames consist of objects of similar kinds, or at least overlap. However, as modal languages
cannot distinguish between isomorphic frames, in fact any subset D of a Cartesian product
Wh×Wv can be considered as an interpretation of the diagonal constant, as long as it is both
‘horizontally ’ and ‘vertically ’ unique in the following sense:

∀x ∈Wh, ∀y, y′ ∈Wv

(
〈x, y〉, 〈x, y′〉 ∈ D → y = y′

)
, (1)

∀x, x′ ∈Wh, ∀y ∈Wv
(
〈x, y〉, 〈x′, y〉 ∈ D → x = x′

)
. (2)

So, say, in the one-variable constant-domain fragment of first-order temporal (or modal) logics,
the diagonal constant can be added in order to single out a set of special ‘time-stamped’
objects of the domain, provided no special object is chosen twice and at every moment of
time (or world along the modal accessibility relation) at most one special object is chosen.

In this paper we study the decision problem of δ-product logics: arbitrary 2D product logics
equipped with a diagonal. It is well-known that the presence or absence of equality in the
two-variable fragment of first-order logic does not influence the coNExpTime-completeness
of its validity problem [34, 28, 14]. So one might expect that adding a diagonal to product
logics in general is similarly harmless. The more so that decidable product logics like K×K
(the bimodal logic of all product frames) remain decidable when one adds modal operators
‘simulating’ the substitution and transposition of first-order variables [38]. However, we show
that adding the diagonal is more dangerous, and there can be quite a big jump in complexity.
In some cases, the global consequence relation of product logics can be reduced the validity-
problem of the corresponding δ-products (Prop. 2). We also show (Theorems 2, 4) that if
L is any logic having an infinite rooted frame where each point can be accessed by at most
one step from the root, then both K ×δ L and K4.3 ×δ L are undecidable (here K is the
unimodal logic of all frames, and K4.3 is the unimodal logic of linear orders). Some notable
consequences of these results are:

(i) K ×δ S5 is undecidable, (while K × S5 is coNExpTime-complete [24], and even the
global consequence relation of K× S5 is decidable in co2NExpTime [43, 33]).

(ii) K4.3×δ S5 is undecidable (while K4.3× S5 is decidable in 2ExpTime [31]).
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(iii) K×δ K is undecidable (while K×K is decidable [8], though not in ElementaryTime
[13]).

See also Table 1 for some known results on product logics, and how our present results on
δ-products compare with them.

While all the above δ-product logics are recursively enumerable (Theorem 1), we also show
that in some cases decidable product logics can turn highly undecidable by adding a diagonal.
For instance, both K×δ S5 and K×δ K when restricted to finite (but unbounded) product
frames result in non-recursively enumerable logics (Theorem 3). Also, Logic of〈ω,<〉 ×δ S5
is Π1

1-hard (Theorem 5). On the other hand, the unbounded width of the second-component
frames seems to be essential in obtaining these results. Adding a diagonal to decidable product
logics of the form K×Alt(n), S5×Alt(n), and Alt(m)×Alt(n) results in decidable logics,
sometimes even with the same upper bounds that are known for the products (Theorems 6
and 7) (here Alt(n) is the unimodal logic of frames where each point has at most n successors
for some 0 < n < ω).

Our undecidable δ-product logics can also be viewed as new fragments of first-order logic
where adding equality changes a decidable fragment to undecidable. (A well-known such
fragment is the Gödel class [11, 12].) In particular, consider the following ‘2D extension’
of the standard translation [9], from bimodal formulas to three-variable first-order formulas
having two free variables x and y and a built-in binary predicate R:

P† := P(x, y), for propositional variables P,

(¬φ) := ¬φ† and (φ ∧ ψ)† := φ† ∧ ψ†,
(20φ)† := ∀z

(
R(x, z)→ φ†(z/x, y)

)
,

(21φ)† := ∀z
(
R(y, z)→ φ†(x, z/y)

)
.

It is straightforward to see that, for any bimodal formula φ, φ is satisfiable in the (decidable)
modal product logic K × K iff φ† is satisfiable in first-order logic. So the image of † is a
decidable fragment of first-order logic that becomes undecidable when equality is added.

Our results show that in many cases the presence of a single proposition (the diagonal)
with the ‘horizontal’ and ‘vertical’ uniqueness properties (1)–(2) is enough to cause undecid-
ability of 2D product logics. If each of the component logics has a difference operator, then
their product can express ‘horizontal’ and ‘vertical’ uniqueness of any proposition. For ex-
ample, this is the case when each component is either the unimodal logic Diff of all frames of
the form 〈W, 6=〉, or a logic determined by strict linear orders such as K4.3 or Logic of〈ω,<〉.
So our Theorems 4 and 5 can be regarded as generalisations of the undecidability results of
[32] on ‘linear’×‘linear’-type products, and those of [17] on ‘linear’×Diff -type products.

On the proof methods. Even if 2D product structures are always grid-like by definition,
there are two issues one needs to deal with in order to encode grid-based complex problems
into them:

(i) to generate infinity, even when some component structure is not transitive, and

(ii) somehow to ‘access’ or ‘refer to’ neighbouring-grid points, even when there is no ‘next-
time’ operator in the language, and/or the component structures are transitive or even
universal.
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global

validity of consequence of validity of

product logic product logic δ-product logic

coNExpTime-complete same coNExpTime-

S5× S5 [34, 28, 14, 24] as validity complete

[34, 28, 14]

coNExpTime-complete decidable in undecidable

K× S5 [24] co2NExpTime Cor. 2

[43, 33]

decidable [8] undecidable

K×K not in ElementaryTime undecidable [24] Cor. 1

[13]

decidable same undecidable

K4.3× S5 in 2ExpTime [31] as validity Cor. 3

coNExpTime-hard [24]

decidable same

K4× S5 in coN2ExpTime [8] as validity ?
coNExpTime-hard [24]

decidable [43] undecidable [15] undecidable

K4×K not in ElementaryTime Cor. 1

[13]

K4×K4 undecidable [10] same undecidable

as validity Prop. 1

decidable decidable

K×Alt(n) in coNExpTime (n > 1) undecidable in coNExpTime

in ExpTime (n = 1) [7] Thm. 6

Table 1: Product vs. δ-product logics.
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When both component structures are transitive, then (i) is not a problem. If in addition
component structures of arbitrarily large depths are available, then (ii) is usually solved by
‘diagonally’ encoding the ω × ω-grid, and then use reductions of tiling or Turing machine
problems [25, 32, 10]. When both components can express the uniqueness of any proposition
(like strict linear orders or the difference operator), then it is also possible to make direct
use of the grid-like nature of product structures and obtain undecidability by forcing reliable
counter machine computations [17]. However, δ-product logics of the form L×δS5 apparently
neither can force such computations directly, nor they can diagonally encode the ω × ω-grid.
Instead, we prove our lower bound results by a novel application of counter machine problems.
The presence of a unique diagonal in the models makes it possible to encode both lossy and
insertion-error computations, for the same sequence of instructions. We then show (Prop. 3)
that, given such a pair of faulty computations, one can actually reconstruct a reliable run
from them. The upper bound results are shown by a straightforward selective filtration.

The structure of the paper is as follows. Section 2 provides all the necessary definitions.
In Section 3 we establish connections between our logics and other formalisms, and discuss
some consequences of these connections on the decision problem of δ-products. In Section 4
we introduce counter machines, and discuss how reliable counter machine computations can
be approximated by faulty (lossy and insertion-error) ones. Then in Sections 5 and 6 we
state and prove our undecidability results on δ-products having a K or a ‘linear’ component,
respectively. The decidability results are proved in Section 7. Finally, in Section 8 we discuss
some related open problems.

2 δ-product logics

In what follows we assume that the reader is familiar with the basic notions in modal logic
and its possible world semantics (see [3, 5] for reference). Below we summarise the necessary
notions and notation for our 3-modal case only, but we will use them throughout for the uni-
and bimodal cases as well. We define our formulas by the following grammar:

φ := P | δ | ¬φ | φ ∧ ψ | 2hφ | 2vφ,

where P ranges over an infinite set of propositional variables. We use the usual abbreviations
∨, →, ↔, ⊥ := P ∧ ¬P, 3i := ¬2i¬, and also

3+
i φ := φ ∨3iφ, 2+

i φ := φ ∧2iφ,

for i = h, v. (The subscripts are indicative of the 2D intuition: h for ‘horizontal’ and v for
‘vertical’.)

A δ-frame is a tuple F = 〈W,Rh, Rv, D〉 where Ri are binary relations on the non-empty
set W , and D is a subset of W . We call F rooted if there is some w such that wR∗v for all
v ∈ W , for the reflexive and transitive closure R∗ of R := Rh ∪ Rv. A model based on F is a
pair M = 〈F, ν〉, where ν is a function mapping propositional variables to subsets of W . The
truth relation M, w |= φ is defined, for all w ∈W , by induction on φ as usual. In particular,

M, w |= δ iff w ∈ D.

We say that φ is satisfied in M, if there is w ∈ W with M, w |= φ. We write M |= φ, if
M, w |= φ for every w ∈ W . Given a set L of formulas, we write M |= L if M |= φ for every
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φ in L. Given formulas φ and ψ, we write φ |=∗L ψ iff M |= ψ for every model M such that
M |= L ∪ {φ}.

We say that φ is valid in F, if M |= φ for every model M based on F. If every formula in
a set L is valid in F, then we say that F is a frame for L. We let FrL denote the class of all
frames for L. For any class C of δ-frames, we let

Logic of C := {φ : φ is a formula valid in every member of C}.

We call a set L of formulas a Kripke complete logic if L = Logic of C for some class C. A
Kripke complete logic L such that for all formulas φ and ψ, φ |=∗L ψ iff M |= φ implies M |= ψ
for every model M based on a frame for L, is called globally Kripke complete.

We are interested in some special ‘two-dimensional’ δ-frames. Given unimodal Kripke
frames Fh = 〈Wh, Rh〉 and Fv = 〈Wv, Rv〉, their product is the bimodal frame

Fh × Fv := 〈Wh ×Wv, Rh, Rv〉,

where Wh×Wv is the Cartesian product of sets Wh and Wv and the binary relations Rh and
Rv are defined by taking, for all x, x′ ∈Wh, y, y′ ∈Wv,

〈x, y〉Rh〈x′, y′〉 iff xRhx
′ and y = y′,

〈x, y〉Rv〈x′, y′〉 iff yRvy
′ and x = x′.

The δ-product of Fh and Fv is the δ-frame

Fh ×δ Fv := 〈Wh ×Wv, Rh, Rv, id〉,

where 〈Wh ×Wv, Rh, Rv〉 = Fh × Fv and

id = {〈x, x〉 : x ∈Wh ∩Wv}.

For classes Ch and Cv of unimodal frames, we define

Ch ×δ Cv = {Fh ×δ Fv : Fi ∈ Ci, for i = h, v}.

Now, for i = h, v, let Li be a Kripke complete unimodal logic in the language with 3i. The
δ-product of Lh and Lv is defined as

Lh ×δ Lv := Logic of (FrLh ×δ FrLv).

As a generalisation of the modal approximation of two-variable first-order logic, it might be
more ‘faithful’ to consider

Lh ×δsq Lv := {φ : φ is valid in Fh ×δ Fv, for some rooted Fi = 〈Wi, Ri〉
in FrLi, i = h, v, such that Wh = Wv},

or, in case Lh = Lv = L, even

L×δsqf L := {φ : φ is valid in F×δ F, for some rooted F ∈ FrL}.

Then S5 ×δsq S5 = S5 ×δsqf S5 indeed corresponds to the transposition-free fragment of two-

variable first-order logic. However, S5×δ S5 is properly contained in S5×δsq S5: for instance
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3hδ belongs to the latter but not to the former. In general, clearly we always have Lh×δLv ⊆
Lh×δsqLv and L×δsqL ⊆ L×δsqfL, whenever Lh = Lv = L. Also, it is not hard to give examples
when the three definitions result in three different logics. Throughout, we formulate all our
results for the Lh ×δ Lv cases only, but each and every of them holds for the corresponding
Lh×δsq Lv as well (and also for L×δsqf L when it is meaningful to consider the same L as both
components).

Given a set L of formulas, we are interested in the following decision problems:

L-validity: Given a formula φ, does it belong to L?

If this problem is (un)decidable, we simply say that ‘L is (un)decidable’. L-validity is the
‘dual’ of

L-satisfiability: Given a formula φ, is there a model M such that M |= L and φ is satisfied
in M?

Clearly, if L = Logic of C then L-satisfiability is the same as

C-satisfiability: Given a formula φ, is there a frame F ∈ C such that φ is satisfied in a
model based on F?

We also consider

Global L-consequence: Given formulas φ and ψ, does φ |=∗L ψ hold?

Notation. Our notation is mostly standard. In particular, we denote by R+ the reflexive
closure of a binary relation R. The cardinality of a set X is denoted by |X|. For each natural
number k < ω, we also consider k as the finite ordinal k = {0, . . . , k − 1}.

3 Decidability of δ-products: what to expect?

To begin with, the following proposition is straightforward from the definitions:

Proposition 1. Lh ×δ Lv is always a conservative extension of Lh × Lv.

So it follows from the undecidability results of [10] on the corresponding product logics
that Lh×δ Lv is undecidable, whenever both Lh and Lv have only transitive frames and have
frames of arbitrarily large depths. For example, K4 ×δ K4 is undecidable, where K4 is the
unimodal logic of all transitive frames.

Next, we establish connections between the global consequence relation of some product
logics and the corresponding δ-products. To begin with, we introduce an operation on frames
that we call disjoint union with a spy-point . Given unimodal frames Fi = 〈Wi, Ri〉, i ∈ I, for
some index set I, and a fresh point r, we let

r⋃
i∈I

Fi := 〈W,R〉,

where

W = {r} ∪ {〈w, i〉 : i ∈ I, w ∈Wi}, and

R =
{〈
r, 〈w, i〉

〉
: w ∈Wi, i ∈ I

}
∪
{〈
〈w, i〉, 〈w′, i〉

〉
: w,w′ ∈Wi, wRiw

′, i ∈ I
}
.

Note that the spy-point technique is well-known in hybrid logic [4].
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Proposition 2. If Lh and Lv are Kripke complete logics such that both FrLh and FrLv are
closed under the ‘disjoint union with a spy-point’ operation and Lh × Lv is globally Kripke
complete, then the global Lh × Lv-consequence is reducible to Lh ×δ Lv-validity.

Proof. We show that for all bimodal (δ-free) formulas φ, ψ,

φ |=∗Lh×Lv
ψ iff

(
(univδ ∧2h2vφ)→ 2h2vψ

)
∈ Lh ×δ Lv,

where
univδ := 2h3vδ ∧2h2h3vδ ∧2v3hδ ∧2v2v3hδ.

⇒: Suppose that M, 〈rh, rv〉 |= univδ ∧ 2h2vφ ∧3h3v¬ψ in a model M that is based on
Fh ×δ Fv, for some frames Fi = 〈Wi, Ri〉 in FrLi, i = h, v. Then there exist xh, xv such that
rhRhxh, rvRvxv and M, 〈xh, xv〉 |= ¬ψ. For i = h, v, let Gi be the subframe of Fi generated
by point xi, and let N be the restriction of M to Gh ×Gv. Then

N |= Lh × Lv and N, 〈xh, xv〉 |= ¬ψ. (3)

We claim that
riRiw, for all w in Gi and i = h, v. (4)

Indeed, let i = h. We prove (4) by induction on the smallest number n of Rh-steps needed
to access w from xh. If n = 0 then we have rhRhxh. Now suppose inductively that (4) holds
for all w in Gh that are accessible in ≤ n Rh-steps from xh for some n < ω, and let w′ be
accessible in n+ 1 Rh-steps. Then there is w in Gh that is accessible in n steps and wRhw

′.
Thus rhRhw by the IH, and so M, 〈w′, rv〉 |= 3vδ by univδ. Therefore, we have w′ ∈Wv and
rvRvw

′. Then M, 〈rh, w′〉 |= 3hδ again by univδ, and so rhRhw
′ as required. The i = v case

is similar.
Now it follows from M, 〈rh, rv〉 |= 2h2vφ and (4) that N |= φ. Therefore, φ 6|=∗Lh×Lv

ψ by
(3).

⇐: Suppose that M |= φ and M, w |= ¬ψ in some model M with M |= Lh × Lv. As
Lh × Lv is globally Kripke complete, we may assume that M = 〈Fh × Fv, µ〉 for some frames

Fi = 〈Wi, Ri〉 in FrLi, i = i, h. Let Fαh , α < |Wv|, be |Wv|-many copies of Fh, and Fβv ,
β < |Wh|, be |Wh|-many copies of Fv. Take some fresh point r and define

Gh = 〈Uh, Sh〉 :=

r⋃
α<|Wv |

Fαh and Gv = 〈Uv, Sv〉 :=

r⋃
β<|Wh|

Fβv .

Then by our assumption, Gi is a frame for Li, for i = h, v. Define a model N := 〈Gh×δGv, ν〉
by taking, for all propositional variables P,

ν(P) :=
{〈
〈x, α〉, 〈y, β〉

〉
: 〈x, y〉 ∈ µ(P)

}
.

Then N, 〈r, r〉 |= 2h2vφ ∧ 3h3v¬ψ. As |Uh| = |Uv| and FrLi is closed under isomorphic
copies for i = h, v, we can actually assume that Uh = Uv, and so N, 〈r, r〉 |= univδ.

Corollary 1. K×δ K and K×δ K4 are both undecidable.
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Proof. It is not hard to check that the 2D product logics K × K and K×K4 satisfy the
requirements in Prop. 2 (cf. [7, Thm.5.12] for global Kripke completeness). A reduction of,
say, the ω × ω-tiling problem [2] shows that global K ×K-consequence is undecidable [24],
and so the undecidability of K×δ K follows by Prop. 2. It is shown in [15] that the reduction
of K4 to global K-consequence [40] can be ‘lifted’ to the product level, and so K4 ×K4 is
reducible to global K×K4-consequence. Therefore, the latter is undecidable [10], and so the
undecidability of K×δ K4 follows by Prop. 2.

Note that we can also make Prop. 2 work for logics having only reflexive frames by making
the ‘spy-point’ reflexive, and using a slightly different ‘translation’:

φ |=∗Lh×Lv
ψ iff(

(univδ ∧2hP ∧2vP ∧2h2v(¬P→ φ)→ 2h2v(¬P→ ψ)
)
∈ Lh ×δ Lv,

where P is a fresh propositional variable.
However, logics having only symmetric frames (like S5), or having only frames with

bounded width (like K4.3 or Alt(n)) are not closed under the ‘disjoint union with a spy-
point’ operation, and so Prop. 2 does not apply to their products. It turns out that in some of
these cases such a reduction is either not useful in establishing undecidability of δ-products,
or does not even exist. While global K×S5-consequence is reducible to PDL× S5-validity1,
and so decidable in co2NExpTime [43, 33], K ×δ S5 is shown to be undecidable in The-
orem 2 below. While K ×δ Alt(n) is decidable by Theorem 6 below, the undecidability of
global K × Alt(n)-consequence can again be shown by a straightforward reduction of the
ω × ω-tiling problem.

Finally, the following general result is a straightforward generalisation of the similar the-
orem of [8] on product logics. It is an easy consequence of the recursive enumerability of the
consequence relation of (many-sorted) first-order logic:

Theorem 1. If Lh and Lv are Kripke complete logics such that both FrLh and FrLv are
recursively first-order definable in the language having a binary predicate symbol, then Lh×δLv
is recursively enumerable.

4 Reliable counter machines and faulty approximations

A Minsky [27] or counter machine M is described by a finite set Q of states, an initial state
qini ∈ Q, a set H ⊆ Q of terminal states, a finite set C = {c0, . . . , cN−1} of counters with
N > 1, a finite nonempty set Iq ⊆ OpC ×Q of instructions, for each q ∈ Q−H, where each
operation in OpC is one of the following forms, for some i < N :

• c++
i (increment counter ci by one),

• c−−i (decrement counter ci by one),

• c??i (test whether counter ci is empty).

1Here PDL denotes Propositional Dynamic Logic.
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For each α ∈ OpC , we will consider three different kinds of semantics: reliable (as described
above), lossy [26] (when counters can spontaneously decrease, both before and after perform-
ing α), and insertion-error [29] (when counters can spontaneously increase, both before and
after performing α).

A configuration of M is a tuple 〈q,~c〉 with q ∈ Q representing the current state, and
an N -tuple ~c = 〈c0, . . . , cN−1〉 of natural numbers representing the current contents of the
counters. Given α ∈ OpC , we say that there is a reliable α-step between configurations 〈q,~c 〉
and 〈q′,~c ′〉 (written 〈q,~c 〉→α〈q′,~c ′〉) iff 〈α, q′〉 ∈ Iq and

• if α = c++
i then c′i = ci + 1 and c′j = cj for j 6= i, j < N ;

• if α = c−−i then c′i = ci − 1 and c′j = cj for j 6= i, j < N ;

• if α = c??i then c′i = ci = 0 and c′j = cj for j < N .

We say that there is a lossy α-step between configurations 〈q,~c 〉 and 〈q′,~c ′〉 (and we write
〈q,~c 〉→α

lossy〈q′,~c ′〉) iff 〈α, q′〉 ∈ Iq and

• if α = c++
i then c′i ≤ ci + 1 and c′j ≤ cj for j 6= i, j < N ;

• if α = c−−i then c′i ≤ ci − 1 and c′j ≤ cj for j 6= i, j < N ;

• if α = c??i then c′i = 0 and c′j ≤ cj for j < N .

Finally, we say that there is an insertion-error α-step between configurations 〈q,~c 〉 and 〈q′,~c ′〉
(written 〈q,~c 〉→α

i err〈q′,~c ′〉) iff 〈α, q′〉 ∈ Iq and

• if α = c++
i then c′i ≥ ci + 1 and c′j ≥ cj for j 6= i, j < N ;

• if α = c−−i then c′i ≥ ci − 1 and c′j ≥ cj for j 6= i, j < N ;

• if α = c??i then ci = 0 and c′j ≥ cj for j < N .

Now suppose that a sequence ~τ =
〈
〈αn, qn〉 : 0 < n < B

〉
of instructions of M is given for

some 0 < B ≤ ω. We say that a sequence ~% =
〈
〈qn,~c(n)〉 : n < B

〉
of configurations is a

reliable ~τ -run of M if

(i) q0 = qini, ~c(0) = ~0, and

(ii) 〈qn−1,~c(n− 1)〉→αn〈qn,~c(n)〉 holds for every 0 < n < B.

A reliable run is a reliable ~τ -run for some ~τ . Similarly, a sequence ~% satisfying (i) is called
a lossy ~τ -run if we have 〈qn−1,~c(n − 1)〉→αn

lossy〈qn,~c(n)〉, and an insertion-error ~τ -run if we
have 〈qn−1,~c(n−1)〉→αn

i err〈qn,~c(n)〉, for every 0 < n < B. (Note that in order to simplify the
presentation, in each case we only consider runs that start at state qini with all-zero counters.)

Observe that, for any given ~τ , if there exists a reliable ~τ -run, then it is unique. The follow-
ing statement says that this unique reliable ~τ -run can be ‘approximated’ by a 〈lossy, insertion-
error〉-pair of ~τ -runs:

Proposition 3. (faulty approximation)
Given any sequence ~τ of instructions, there exists a reliable ~τ -run iff there exist both lossy
and insertion-error ~τ -runs.

10



Proof. The⇒ direction is obvious, as each reliable ~τ -run is both a lossy and an insertion-error
~τ -run as well. For the ⇐ direction, suppose that ~τ =

〈
〈αn, qn〉 : 0 < n < B

〉
for some B ≤ ω,〈

〈qn,~c ◦(n)〉 : n < B
〉

is a lossy ~τ -run, and
〈
〈qn,~c •(n)〉 : n < B

〉
is an insertion-error ~τ -run.

We claim that there is a sequence 〈~c(n) : n < B〉 of N -tuples of natural numbers such that,
for every n < B,

(a) c◦i (n) ≤ ci(n) ≤ c•i (n) for every i < N ,

(b) if n > 0 then 〈qn−1,~c(n− 1)〉→αn〈qn,~c(n)〉.

It would follow that
〈
〈qn,~c(n)〉 : n < B

〉
is a reliable ~τ -run as required.

We prove the claim by induction on n. To begin with, we let ~c(0) := ~0. Now suppose that
(a) and (b) hold for all k < n for some n with 0 < n < B. For each i < N , we let

ci(n) :=


ci(n− 1) + 1, if αn = c++

i ,
ci(n− 1)− 1, if αn = c−−i ,
ci(n− 1), if αn = c??i or αn ∈ {c++

j , c−−j , c??j } for j 6= i.

We need to check that (a) and (b) hold for n. There are several cases, depending on
αn. If αn = c??i then, by 〈qn−1,~c ◦(n − 1)〉→αn

lossy〈qn,~c
◦(n)〉, the IH(a), and 〈qn−1,~c •(n −

1)〉→αn
i err〈qn,~c •(n)〉, we have

c◦j (n) ≤ c◦j (n− 1) ≤ cj(n− 1) = cj(n) ≤ c•j (n− 1) ≤ c•j (n) for all j 6= i.

Also, c•i (n−1) = 0 by 〈qn−1,~c •(n−1)〉→αn
i err〈qn,~c •(n)〉. So by the IH(a), we have ci(n−1) =

0, and so ci(n) = 0 and 〈qn−1,~c(n− 1)〉→αn〈qn,~c(n)〉. As 〈qn−1,~c ◦(n− 1)〉→αn
lossy〈qn,~c

◦(n)〉,
we have c◦i (n) = 0. Thus c◦i (n) = ci(n) = c•i (n− 1) = 0 ≤ c•i (n), as required. The other cases
are straightforward and left to the reader.

In each of our lower bound proofs we will use ‘faulty approximation’, together with one
of the following problems on reliable counter machine runs:

CM non-termination: (Π0
1-hard [27])

Given a counter machine M, does M have an infinite reliable run?

CM reachability: (Σ0
1-hard [27])

Given a counter machine M, and a state qfin, does M have a reliable run reaching qfin?

CM recurrence: (Σ1
1-hard [1])

Given a counter machineM and a state qr, doesM have a reliable run that visits qr infinitely
often?

5 Undecidable δ-products with a K-component

For each 0 < k ≤ ω, we call any frame 〈k,R〉 a k-fan if

{〈0, n〉 : 0 < n < k} ⊆ R. (5)

Theorem 2. Let L be any Kripke complete logic having an ω-fan among its frames. Then
K×δ L is undecidable.
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Corollary 2. K×δ S5 is undecidable.

We prove Theorem 2 by reducing the ‘CM non-termination’ problem to Lh×δLv-satisfiability.
Let M be a model based on the δ-product of some frame Fh = 〈Wh, Rh〉 in FrLh and some
frame Fv = 〈Wv, Rv〉 in FrLv. First, we generate an ω × ω-grid in M. Let grid be the
conjunction of the formulas

2+
v 3hδ, (6)

2h3v(3hδ ∧2hδ). (7)

Claim 2.1. (grid generation)
If M, 〈rh, rv〉 |= grid then there exist points 〈xn ∈Wh ∩Wv : n < ω〉 such that, for all n < ω,

(i) rhRhxn,

(ii) x0 = rv, and if n > 0 then x0Rvxn,

(iii) if n > 0 then xn−1Rhxn,

(iv) if n > 0 then xn is the only Rh-successor of xn−1.

(We do not claim that all the xn are distinct.)

Proof. By induction on n. Let x0 := rv. Then (i) holds by (6). Now suppose inductively
that we have 〈xk : k < n〉 satisfying (i)–(iv) for some 0 < n < ω. Then by (7), there is
xn ∈Wv such that x0Rvxn and M, 〈xn−1, xn〉 |= 3hδ ∧2hδ. Therefore, xn ∈Wh, xn−1Rhxn,
and xn is the only Rh-successor of xn−1. By (6), M, 〈rh, xn〉 |= 3hδ. So rhRhxn follows, as
required.

Observe that because of Claim 2.1(iii) and (iv), 2h in fact expresses ‘horizontal next-time’
in our grid. For any formula ψ and any w ∈Wv,

M, 〈xn, w〉 |= 2hψ iff M, 〈xn+1, w〉 |= ψ, for all n < ω. (8)

Using this, we will force a pair of infinite lossy and insertion-error ~τ -runs, for the same
sequence ~τ of instructions. Given any counter machine M , for each i < N of its counters,
we take two fresh propositional variables C◦i and C•i . At each moment n of time, the actual
content of counter ci during the lossy run will be represented by the set of points

Σ◦i (n) := {w ∈Wv : x0R
+
v w and M, 〈xn, w〉 |= C◦i },

and during the insertion-error run by the set of points

Σ•i (n) := {w ∈Wv : x0R
+
v w and M, 〈xn, w〉 |= C•i }.

For each i < N , the following formulas force the possible changes in the counters during the
lossy and insertion-error runs, respectively:

fix◦i := 2+
v (2hC◦i → C◦i ),

inc◦i := 2+
v

(
2hC◦i → (C◦i ∨ δ)

)
,

dec◦i := 2+
v (2hC◦i → C◦i ) ∧3+

v (C◦i ∧2h¬C◦i ),

12



and

fix•i := 2+
v (C•i → 2hC•i ),

inc•i := 2+
v (C•i → 2hC•i ) ∧3+

v (¬C•i ∧2hC•i ),

dec•i := 2+
v

(
C•i → (2hC•i ∨ δ)

)
.

Claim 2.2. (lossy and insertion-error counting)
Suppose that M, 〈rh, rv〉 |= grid. Then for all n < ω and i < N :

(i) If M, 〈xn, x0〉 |= fix◦i then Σ◦i (n+ 1) ⊆ Σ◦i (n).

(ii) If M, 〈xn, x0〉 |= inc◦i then Σ◦i (n+ 1) ⊆ Σ◦i (n) ∪ {xn}.

(iii) If M, 〈xn, x0〉 |= dec◦i then Σ◦i (n+ 1)⊆ Σ◦i (n)− {z} for some z ∈ Σ◦i (n).

(iv) If M, 〈xn, x0〉 |= fix•i then Σ•i (n+ 1) ⊇ Σ•i (n).

(v) If M, 〈xn, x0〉 |= inc•i then there is z such that x0R
+
v z, z /∈ Σ•i (n), and Σ•i (n + 1) ⊇

Σ•i (n) ∪ {z}.

(vi) If M, 〈xn, x0〉 |= dec•i then Σ•i (n+ 1) ⊇ Σ•i (n)− {xn}.

Proof. We show items (ii) and(v). The proofs of the other items are similar and left to the
reader.

(ii): Suppose w ∈ Σ◦i (n + 1). Then x0R
+
v w and M, 〈xn+1, w〉 |= C◦i . By (8), we have

M, 〈xn, w〉 |= 2hC◦i . Therefore, M, 〈xn, w〉 |= C◦i ∨ δ by inc◦i , and so either w ∈ Σ◦i (n) or
w = xn.

(v): By inc•i , there is z with x0R
+
v z and M, 〈xn, z〉 |= ¬C•i ∧2hC•i . Thus z /∈ Σ•i (n). Also,

we have M, 〈xn+1, z〉 |= C•i by (8), and so z ∈ Σ•i (n + 1). Now suppose w ∈ Σ•i (n). Then
x0R

+
v w and M, 〈xn, w〉 |= C•i . By inc•i , we have M, 〈xn, w〉 |= 2hC•i . Thus M, 〈xn+1, w〉 |= C•i

by (8), and so w ∈ Σ•i (n+ 1).

Using the above counting machinery, we can encode lossy and insertion-error steps. For
each α ∈ OpC , we define

do◦(α) :=



inc◦i ∧
∧

i 6=j<N
fix◦j , if α = c++

i ,

dec◦i ∧
∧

i 6=j<N
fix◦j , if α = c−−i ,

2+
v 2h¬C◦i ∧

∧
i 6=j<N

fix◦j , if α = c??i ,

and

do•(α) :=



inc•i ∧
∧

i 6=j<N
fix•j , if α = c++

i ,

dec•i ∧
∧

i 6=j<N
fix•j , if α = c−−i ,

2+
v ¬C•i ∧

∧
i 6=j<N

fix•j , if α = c??i .
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Now we can force runs of M that start at qini with all-zero counters. For each state q ∈ Q,
we introduce a fresh propositional variable Sq, and define

Ŝq := Sq ∧
∧

q 6=q′∈Q
¬Sq′ . (9)

Let ϕM be the conjunction of

2h

(
δ →

(
Ŝqini ∧2+

v (¬C◦i ∧ ¬C•i )
))
, (10)

2h

∧
q∈Q−H

(
Ŝq →

∨
〈α,q′〉∈Iq

(
2hŜq′ ∧ do◦(α) ∧ do•(α)

))
, (11)

2h

∨
q∈Q−H

Ŝq. (12)

Lemma 2.3. (lossy and insertion-error run-emulation)
Suppose that M, 〈rh, rv〉 |= grid ∧ ϕM . Let q0 := qini, and for all i < N , n < ω, let c◦i (n) :=
|Σ◦i (n)| and

c•i (n) :=

{
c•i (n− 1) + 1, if Σ•i (n) is infinite,

|Σ•i (n)|, otherwise.

Then there exists an infinite sequence ~τ =
〈
〈αn, qn〉 : 0 < n < ω

〉
of instructions such that

•
〈
〈qn,~c ◦(n)〉 : n < ω

〉
is a lossy ~τ -run of M , and

•
〈
〈qn,~c •(n)〉 : n < ω

〉
is an insertion-error ~τ -run of M .

Proof. We define
〈
〈αn, qn〉 : 0 < n < ω

〉
by induction on n such that for all 0 < n < ω,

• qn ∈ Q−H and M, 〈xn, x0〉 |= Ŝqn ,

• 〈qn−1,~c ◦(n− 1)〉→αn
lossy〈qn,~c

◦(n)〉 and 〈qn−1,~c •(n− 1)〉→αn
i err〈qn,~c •(n)〉.

As ~c ◦(0) = ~c •(0) = ~0 by (10), the lemma will follow.
To this end, take some n with 0 < n < ω. Then we have qn−1 ∈ Q−H and M, 〈xn−1, x0〉 |=

Ŝqn−1 , by (10) and (12) if n = 1, and by the IH if n > 1. Therefore, by Claim 2.1(i) and

(11), there is 〈αn, qn〉 ∈ Iqn−1 such that M, 〈xn−1, x0〉 |= 2hŜqn ∧ do◦(αn) ∧ do•(αn). So

M, 〈xn, x0〉 |= Ŝqn by Claim 2.1(iii), and so qn ∈ Q − H by Claim 2.1(i) and (12). Using
Claim 2.2(i)–(iii), it is easy to check that 〈qn−1,~c ◦(n− 1)〉→αn

lossy〈qn,~c
◦(n)〉. Finally, in order

to show that 〈qn−1,~c •(n − 1)〉→αn
i err〈qn,~c •(n)〉, we need to use Claim 2.2(iv)–(vi) and the

following observation. As for each i < N either Σ•i (n−1) is infinite or c•i (n−1) = |Σ•i (n−1)|,
if c•i (n− 1) 6= 0 then Σ•i (n− 1) 6= ∅, and so αn 6= c??i follows by M, 〈xn−1, x0〉 |= do•(αn).

For each k ≤ ω, let Hk be the frame obtained from 〈k,+1〉 by adding a ‘spy-point’, that
is, let Hk := 〈k + 1, Sk〉, where

Sk = {〈k, n〉 : n < k} ∪ {〈n− 1, n〉 : 0 < n < k}. (13)

Lemma 2.4. (soundness)
If M has an infinite reliable run, then grid ∧ ϕM is satisfiable in a model over Hω ×δ F for
some ω-fan F.
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Proof. Suppose that
〈
〈qn,~c(n)〉 : n < ω

〉
is a reliable ~τ -run of M , for some sequence ~τ =〈

〈αn, qn〉 : 0 < n < ω
〉

of instructions. We define a model M∞ = 〈Hω ×δ F, µ〉 as follows. For
each q ∈ Q, we let

µ(Sq) := {〈n, 0〉 : n < ω, qn = q}.

Further, for all i < N , n < ω, we will define inductively the sets µn(C◦i ) and µn(C•i ), and then
put

µ(C◦i ) := {〈n,m〉 : m ∈ µn(C◦i )} and µ(C•i ) := {〈n,m〉 : m ∈ µn(C•i )}.

To begin with, we let µ0(C◦i ) = µ0(C•i ) := ∅, and

µn+1(C◦i ) :=


µn(C◦i ) ∪ {n}, if αn+1 = c++

i ,
µn(C◦i )− {minµn(C◦i )}, if αn+1 = c−−i ,
µn(C◦i ), otherwise.

It is straightforward to check that

|µn(C◦i )| = ci(n) and M∞, 〈n, 0〉 |= do◦(αn+1), for all i < N, n < ω. (14)

We need to be a bit more careful when defining µn(C•i ). As the formulas do•(αn) permit
decrementing the insertion-error counters only at diagonal points, we must be sure that only
previously incremented points get decremented. To this end, for every i < N , we let

Λi := {k < ω : αk+1 = c−−i }, Ξi := {k < ω : αk+1 = c++
i }, (15)

and let

〈λim : m < Li〉 be the enumeration of Λi in ascending order, and (16)

〈ξim : m < Ki〉 be the enumeration of Ξi in ascending order, (17)

for some Li,Ki ≤ ω. As in a run only non-zero counters can be decremented and our run is
reliable, we always have Li ≤ Ki, and λim > ξim for all m < Li. Then we let

µn+1(C•i ) :=



µn(C•i ) ∪ {λim}, if αn+1 = c++
i , n = ξim,

m < Li,
µn(C•i ) ∪

{
min

(
ω − µn(C•i )

)}
, if αn+1 = c++

i , n = ξim,
Li ≤ m < Ki,

µn(C•i )− {n}, if αn+1 = c−−i ,
µn(C•i ), otherwise.

We claim that if αn+1 = c−−i then n ∈ µn(C•i ), and so |µn+1(C•i )| = |µn(C•i )| − 1. Indeed,
if αn+1 = c−−i then n = λim for some m < Li. So µξim+1(C•i ) = µξim(C•i ) ∪ {λim}, and so

n ∈ µξim+1(C•i ). It follows that n ∈ µk(C•i ) for every k with ξim + 1 ≤ k < n+ 1, as required.
Now it is not hard to see that |µn(C•i )| = ci(n) and M∞, 〈n, 0〉 |= do•(αn+1), for all i < N

and n < ω. Using this and (14), it is easy to check that M∞, 〈ω, 0〉 |= grid ∧ ϕM .

Now Theorem 2 follows from Prop. 3, Lemmas 2.3 and 2.4.

Note that it is easy to generalise the proof to obtain undecidability of T×δ L (where T is
the unimodal logic of all reflexive frames), by using a version of the ‘tick-’ or ‘chessboard’-trick
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(see e.g. [39, 32, 10] for more details): Take a fresh propositional variable tick, and define a
new ‘horizontal’ modal operator by setting, for all formulas φ,

�hφ :=
(
tick→ 2h(¬tick→ φ)

)
∧
(
¬tick→ 2h(tick→ φ)

)
. (18)

Then replace each occurrence of 2h in the formula grid ∧ ϕM with �h, and add the conjunct

2h
(
(tick↔ 2vtick) ∧ (¬tick↔ 2v¬tick)

)
. (19)

It is not hard to check that the resulting formula is T ×δ L-satisfiable iff M has an infinite
reliable run.

Next, recall k-fans from (5), and the frames Hk from (13).

Theorem 3. Let Ch and Cv be any classes of frames such that

• either Ch or Cv contains only finite frames,

• either Hω ∈ Ch, or Hk ∈ Ch for every k < ω,

• either Cv contains an ω-fan, or Cv contains a k-fan for every k < ω.

Then Logic of(Ch ×δ Cv) is not recursively enumerable.

Proof. We sketch how to modify the proof of Theorem 2 to obtain a reduction of the ‘CM
reachability’ problem to Ch ×δ Cv-satisfiability. To begin with, observe that if we add the
conjunct

2h2
+
v

(
p ∨ δ → 2h(p ∧ ¬δ)

)
(20)

to the formula grid defined in (6)–(7), then the grid-points xn generated in Claim 2.1 are
all different. Now we introduce a fresh propositional variable end, and let gridfin be the
conjunction of (6), (20) and the following ‘finitary’ version of (7):

2h3v

(
end ∨ (3hδ ∧2hδ)

)
. (21)

Given any counter machine M and a state qfin, let ϕfin
M be obtained from ϕM by replacing

(12) with

2h

∨
q∈(Q−H)∪{qfin}

Ŝq.

It is not hard to see that gridfin ∧ ϕfin
M ∧2h(3vend→ Ŝqfin

) is Ch ×δ Cv-satisfiable iff there is a
reliable run of M reaching qfin.

Note that it is also possible to give another proof of Theorem 2 by doing everything
‘backwards’. The conjunction of the following formulas generates a grid backwards in K×δL-
frames, and is used in [22] to show that these logics lack the finite model property w.r.t. any
(not necessarily product) frames:

3v3h(δ ∧2h⊥),

2v
(
3hδ → 3h(¬δ ∧3hδ ∧2hδ)

)
,

2h3vδ.
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Then the conjunction of the following formulas emulates counter machine runs, again by going
backwards along the generated grid:

2h

(
2h⊥ →

(
Ŝqini ∧2+

v (¬C◦i ∧ ¬C•i )
))
,

2h

∧
q∈Q−H

(
3hŜq →

∨
〈α,q′〉∈Iq

(
Ŝq′ ∧ bw do◦(α) ∧ bw do•(α)

))
,

2h

∨
q∈Q−H

Ŝq,

where

bw do◦(α) :=



bw inc◦i ∧
∧

i 6=j<N
bw fix◦j , if α = c++

i ,

bw dec◦i ∧
∧

i 6=j<N
bw fix◦j , if α = c−−i ,

2+
v ¬C◦i ∧

∧
i 6=j<N

bw fix◦j , if α = c??i ,

bw do•(α) :=



bw inc•i ∧
∧

i 6=j<N
bw fix•j , if α = c++

i ,

bw dec•i ∧
∧

i 6=j<N
bw fix•j , if α = c−−i ,

2+
v 2h¬C•i ∧

∧
i 6=j<N

bw fix•j , if α = c??i ,

bw fix◦i := 2+
v (C◦i → 2hC◦i ),

bw inc◦i := 2+
v

(
C◦i → (2hC◦i ∨ δ)

)
,

bw dec◦i := 2+
v (C◦i → 2hC◦i ) ∧3+

v (¬C◦i ∧2hC◦i ),

bw fix•i := 2+
v (2hC•i → C•i ),

bw inc•i := 2+
v (2hC•i → C•i ) ∧3+

v (C•i ∧2h¬C•i ),

bw dec•i := 2+
v

(
2hC•i → (C•i ∨ δ)

)
,

for i < N .

6 Undecidable δ-products with a ‘linear’ component

Theorem 4. Let Lh be any Kripke complete logic such that Lh contains K4.3 and 〈ω,<〉 is
a frame for Lh. Let Lv be any Kripke complete logic having an ω-fan among its frames. Then
Lh ×δ Lv is undecidable.

Corollary 3. K4.3×δ S5 and K4.3×δ K are both undecidable.

We prove Theorem 4 by reducing the ‘CM non-termination’ problem to Lh ×δ Lv-satis-
fiability. Let M be a model based on the δ-product of a frame Fh = 〈Wh, Rh〉 for Lh (so Rh
is transitive and weakly connected2), and some frame Fv = 〈Wv, Rv〉 for Lv. First, we again
generate an ω × ω-grid in M. Let

lingrid := δ ∧2+
h3v(3hδ ∧2h2h¬δ).

2A relation R is called weakly connected if ∀x, y, z
(
xRy ∧ xRz → (y = z ∨ yRz ∨ zRy)

)
.

17



Claim 4.1. (grid generation)
If M, 〈rh, rv〉 |= lingrid then there exist points 〈xn ∈ Wh ∩ Wv : n < ω〉 such that, for all
n < ω,

(i) x0 = rv, and if n > 0 then x0Rvxn,

(ii) if n > 0 then M, 〈xn−1, xn〉 |= 3hδ ∧2h2h¬δ,

(iii) if n > 0 then, for every z, xn−1Rhz implies that z = xn or xnRhz,

(iv) x0 = rh and xmRhxn for all m < n.

Proof. By induction on n. Let x0 := rh. As M, 〈rh, rv〉 |= δ, we have rh = rv. Now
suppose inductively that we have 〈xk : k < n〉 satisfying (i)–(iv) for some 0 < n < ω. Then
there is xn ∈Wv such that x0Rvxn and M, 〈xn−1, xn〉 |= 3hδ∧2h2h¬δ. Therefore, xn ∈Wh,
xn−1Rhxn, and for every z, xn−1Rhz implies that z = xn or xnRhz, by the weak connectedness
of Rh. So by the IH and the transitivity of Rh, we have xmRhxn for all m < n.

Next, given any counter machine M , we will again force both an infinite lossy and an
infinite insertion-error ~τ -run, for the same sequence ~τ of instructions. As Rh is transitive, we
do not have a general ‘horizontal next-time’ operator in our grid, like we had in (8). However,
because of Claim 4.1(iii) and (iv), we still can have the following: For any formula ψ and any
w ∈Wv,

if ψ is such that M, 〈xn+1, w〉 |= ψ → 2hψ, then

M, 〈xn, w〉 |= 2hψ iff M, 〈xn+1, w〉 |= ψ, for all n < ω. (22)

In order to utilise this, for each counter i < N of M , we introduce two pairs of propositional
variables: In◦i , Out◦i for emulating lossy behaviour, and In•i , Out•i for emulating insertion-error
behaviour. The following formula ensures that the condition in (22) hold for each of these
variables, at all the relevant points in M:

ξM :=
∧
i<N

2+
h2

+
v

(
(In◦i → 2hIn◦i ) ∧ (Out◦i → 2hOut◦i )

∧ (In•i → 2hIn•i ) ∧ (Out•i → 2hOut•i )
)
.

At each moment n of time, the actual content of counter ci during the lossy run will be
represented by the set of points

∆◦i (n) := {w ∈Wv : x0R
+
v w and M, 〈xn, w〉 |= In◦i ∧ ¬Out◦i },

and during the insertion-error run by the set of points

∆•i (n) := {w ∈Wv : x0R
+
v w and M, 〈xn, w〉 |= In•i ∧ ¬Out•i }.

For each i < N , the following formulas force the possible changes in the counters during the
lossy and insertion-error runs, respectively:

lin fix◦i := 2+
v (2hIn◦i → In◦i ),

lin inc◦i := 2+
v

(
2hIn◦i → (In◦i ∨ δ)

)
,

lin dec◦i := 2+
v (2hIn◦i → In◦i ) ∧3+

v (In◦i ∧ ¬Out◦i ∧2hOut◦i ),
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and

lin fix•i := 2+
v (2hOut•i → Out•i ),

lin inc•i := 2+
v (2hOut•i → Out•i ) ∧3+

v (¬In•i ∧ ¬Out•i ∧2hIn•i ),

lin dec•i := 2+
v

(
2hOut•i → (Out•i ∨ δ)

)
.

Claim 4.2. (lossy and insertion-error counting)
Suppose that M, 〈rh, rv〉 |= lingrid ∧ ξM . Then for all n < ω, i < N :

(i) If M, 〈xn, x0〉 |= lin fix◦i then ∆◦i (n+ 1) ⊆ ∆◦i (n).

(ii) If M, 〈xn, x0〉 |= lin inc◦i then ∆◦i (n+ 1) ⊆ ∆◦i (n) ∪ {xn}.

(iii) If M, 〈xn, x0〉 |= lin dec◦i then ∆◦i (n+ 1)⊆ ∆◦i (n)− {z} for some z ∈ ∆◦i (n).

(iv) If M, 〈xn, x0〉 |= lin fix•i then ∆•i (n+ 1) ⊇ ∆•i (n).

(v) If M, 〈xn, x0〉 |= lin inc•i then there is z such that x0R
+
v z, z /∈ ∆•i (n), and ∆•i (n+ 1) ⊇

∆•i (n) ∪ {z}.

(vi) If M, 〈xn, x0〉 |= lin dec•i then ∆•i (n+ 1) ⊇ ∆•i (n)− {xn}.

Proof. We show items (iii) and (vi). The proofs of the other items are similar and left to the
reader.

(iii): By lin dec◦i , there is z such that x0R
+
v z and

M, 〈xn, z〉 |= In◦i ∧ ¬Out◦i ∧2hOut◦i .

So z ∈ ∆◦i (n). Also, by Claim 4.1(iv),

M, 〈xn+1, z〉 |= Out◦i . (23)

Now suppose w ∈ ∆◦i (n + 1). Then x0R
+
v w and M, 〈xn+1, w〉 |= In◦i ∧ ¬Out◦i . Then

M, 〈xn, w〉 |= ¬Out◦i by ξM and Claim 4.1(iv), and M, 〈xn, w〉 |= 2hIn◦i by ξM and (22).
So we have M, 〈xn, w〉 |= In◦i by lin dec◦i , and so w ∈ ∆◦i (n). Finally, w 6= z by (23).

(vi): Suppose that w ∈ ∆•i (n)− {xn}. Then x0R
+
v w and M, 〈xn, w〉 |= In•i ∧ ¬Out•i ∧ ¬δ.

Then M, 〈xn+1, w〉 |= In•i by ξM and Claim 4.1(iv), and M, 〈xn, w〉 |= ¬2hOut•i by lin dec•i .
Therefore, M, 〈xn+1, w〉 |= ¬Out•i by ξM and (22), and so we have w ∈ ∆•i (n+ 1).

For each α ∈ OpC , we define

lin do◦(α) :=



lin inc◦i ∧
∧

i 6=j<N
lin fix◦j , if α = c++

i ,

lin dec◦i ∧
∧

i 6=j<N
lin fix◦j , if α = c−−i ,

2+
v (2hIn◦i → 2hOut◦i ) ∧

∧
i 6=j<N

lin fix◦j , if α = c??i ,

and

lin do•(α) :=



lin inc•i ∧
∧

i 6=j<N
lin fix•j , if α = c++

i ,

lin dec•i ∧
∧

i 6=j<N
lin fix•j , if α = c−−i ,

2+
v (In•i → Out•i ) ∧

∧
i 6=j<N

lin fix•j , if α = c??i .
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For each state q ∈ Q, we introduce a fresh propositional variable Sq, and define the formula

Ŝq as in (9). Let ψM be the conjunction of ξM and the following formulas:

Ŝqini ∧2+
v (¬In◦i ∧ ¬Out◦i ∧ ¬In•i ∧ ¬Out•i ), (24)

2+
h

∧
q∈Q−H

[
3+
v Ŝq →

∨
〈α,q′〉∈Iq

(
lin do◦(α) ∧ lin do•(α)∧

2+
v

(
3hδ ∧2h2h¬δ → 2h(δ → Ŝq′)

))]
, (25)

2+
h2

+
v

(
δ →

∨
q∈Q−H

Ŝq
)
. (26)

Lemma 4.3. (lossy and insertion-error run-emulation)
Suppose that M, 〈rh, rv〉 |= lingrid ∧ ψM . Let q0 := qini, and for all i < N , n < ω, let
c◦i (n) := |∆◦i (n)| and

c•i (n) :=

{
c•i (n− 1) + 1, if ∆•i (n) is infinite,

|∆•i (n)|, otherwise.

Then there exists an infinite sequence ~τ =
〈
〈αn, qn〉 : 0 < n < ω

〉
of instructions such that

•
〈
〈qn,~c ◦(n)〉 : n < ω

〉
is a lossy ~τ -run of M , and

•
〈
〈qn,~c •(n)〉 : n < ω

〉
is an insertion-error ~τ -run of M .

Proof. We define
〈
〈αn, qn〉 : 0 < n < ω

〉
by induction on n such that for all 0 < n < ω

• qn ∈ Q−H and M, 〈xn, xn〉 |= Ŝqn ,

• 〈qn−1,~c ◦(n− 1)〉→αn
lossy〈qn,~c

◦(n)〉 and 〈qn−1,~c •(n− 1)〉→αn
i err〈qn,~c •(n)〉.

As ~c ◦(0) = ~c •(0) = ~0 by (24), the lemma will follow.
To this end, take some n with 0 < n < ω. Then we have qn−1 ∈ Q−H and M, 〈xn−1, xn−1〉 |=

Ŝqn−1 , by (24) and (26) if n = 1, and by the IH if n > 1. So by Claim 4.1(i), we have

M, 〈xn−1, x0〉 |= 3+
v Ŝqn−1 . Thus by Claim 4.1(iv) and (25), there is 〈αn, qn〉 ∈ Iqn−1 such that

M, 〈xn−1, x0〉 |= lin do◦(αn) ∧ lin do•(αn) and

M, 〈xn−1, x0〉 |= 2+
v

(
3hδ ∧2h2h¬δ → 2h(δ → Ŝq′)

)
. (27)

Now it is easy to check that 〈qn−1,~c ◦(n− 1)〉→αn
lossy〈qn,~c

◦(n)〉 holds, using Claim 4.2(i)–(iii).
In order to show that 〈qn−1,~c •(n−1)〉→αn

i err〈qn,~c •(n)〉, we need to use Claim 4.2(iv)–(vi) and
the following observation. As for each i < N either ∆•i (n−1) is infinite or c•i (n−1) = |∆•i (n−
1)|, if c•i (n−1) 6= 0 then ∆•i (n−1) 6= ∅, and so αn 6= c??i follows by M, 〈xn−1, x0〉 |= lin do•(αn).

Finally, we have M, 〈xn, xn〉 |= Ŝqn by (27) and Claim 4.1(ii),(iv), and so qn ∈ Q − H by
Claim 4.1(i),(iv) and (26).

Lemma 4.4. (soundness)
If M has an infinite reliable run, then lingrid ∧ ψM is satisfiable in a model over 〈ω,<〉 ×δ F
for some countably infinite one-step rooted frame F.
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Proof. We may assume that F = 〈ω, S〉 and {〈0, n〉 : 0 < n < ω} ⊆ S. Suppose that〈
〈qn,~c(n)〉 : n < ω

〉
is a reliable run of M , for some sequence ~τ =

〈
〈αn, qn〉 : 0 < n < ω

〉
of

instructions. We define a model

N∞ =
〈
〈ω,<〉 ×δ F, ν

〉
as follows. For each q ∈ Q, we let

ν(Sq) := {〈n, n〉 : n < ω, qn = q}.

Further, for all i < N , n < ω, we will define inductively the sets νn(In◦i ), νn(Out◦i ), νn(In•i ),
and νn(Out•i ), and then put

ν(P) := {〈n,m〉 : m ∈ νn(P)},

for P ∈ {In◦i ,Out◦i , In
•
i ,Out•i }. To begin with, we let ν0(In◦i ) = ν0(Out◦i ) = ν0(In•i ) = ν0(Out•i ) :=

∅, and

νn+1(In◦i ) :=

{
νn(In◦i ) ∪ {n}, if αn+1 = c++

i ,
νn(In◦i ), otherwise,

νn+1(Out◦i ) :=

{
νn(Out◦i ) ∪ {min

(
νn(In◦i )−νn(Out◦i )

)
}, if αn+1 = c−−i ,

νn(Out◦i ), otherwise,

νn+1(Out•i ) :=

{
νn(Out•i ) ∪ {n}, if αn+1 = c−−i ,
νn(Out•i ), otherwise.

Next, recall the notation introduced in (15)–(17). We let

νn+1(In•i ) :=


νn(In•i ) ∪ {λim}, if αn+1 = c++

i , n = ξim,
m < Li,

νn(In•i ) ∪
{

min
(
ω − νn(In•i )

)}
, if αn+1 = c++

i , n = ξim,
Li ≤ m < Ki,

νn(In•i ), otherwise.

We claim that if αn+1 = c−−i then n ∈ νn(C•i ) = νn+1(C•i ), and so

|νn+1(In•i )− νn+1(Out•i )| = |νn(In•i )− νn(Out•i )| − 1.

Indeed, if αn+1 = c−−i then n = λim for some m < Li. So νξim+1(In•i ) = νξim(In•i ) ∪ {λim}, and

so n ∈ νξim+1(In•i ). It follows that n ∈ νk(In•i ) for every k with ξim + 1 ≤ k. As λim > ξim, we
have n ∈ νn(C•i ) as required.

Now it is not hard to check that

|νn(In◦i )− νn(Out◦i )| = |νn(In•i )− νn(Out•i )| = ci(n)

and N∞, 〈n, 0〉 |= lin do◦(αn+1)∧ lin do•(αn+1), for all i < N and n < ω, and so N∞, 〈0, 0〉 |=
lingrid ∧ ψM .

Now Theorem 4 follows from Prop. 3, Lemmas 4.3 and 4.4.

In some cases, we can have stronger lower bounds than in Theorem 4. We call a frame
〈W,R〉 modally discrete if it satisfies the following aspect of discreteness: there are no
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points x0, x1, . . . , xn, . . . , x∞ in W such that x0Rx1Rx2R . . . RxnR . . . Rx∞, xn 6= xn+1 and
x∞¬Rxn, for all n < ω. We denote by DisK4.3 the logic of all modally discrete linear
orders. Several well-known ‘linear’ modal logics are extensions of DisK4.3, for example,
Logic of〈ω,<〉, Logic of〈ω,≤〉, GL.3 (the unimodal logic of all Noetherian3 linear orders),
and Grz.3 (the unimodal logic of all Noetherian reflexive linear orders). Unlike ‘real’ dis-
creteness, modal discreteness can be captured by modal formulas, and each of the logics above
is finitely axiomatisable [35, 6].

Theorem 5. Let Lh be any Kripke complete logic such that Lh contains DisK4.3 and 〈ω,<〉
is a frame for Lh. Let Lv be any Kripke complete logic having an ω-fan among its frames.
Then both Lh ×δ Lv and Lh ×δsq Lv are Π1

1-hard.

Proof. We sketch how to modify the proof of Theorem 4 to obtain a reduction of the ‘CM
recurrence’ problem to Lh×δLv-satisfiability. Observe that by Claim 4.1(ii),(iv), the generated
grid-points xn are such that xn 6= xn+1 for all n < ω. Therefore, if M is a model based on a
δ-product frame with a modally discrete ‘horizontal’ component and

M, 〈rh, rv〉 |= lingrid ∧ ψM ∧2h3h3v(δ ∧ Ŝqr)

for some state qr, then by Claim 4.1(iii),(iv), for every n < ω there is k such that n < k < ω
and M, 〈xk, xk〉 |= Ŝqr .

However, the formula lingrid is clearly not satisfiable when Lh has only reflexive and/or
dense frames (like S4.3, the unimodal logic of all reflexive linear orders, or the unimodal
logic Logic of〈Q, <〉 over the rationals). It is not hard to see that a ‘linear’ version of the
‘tick-trick’ in (18)–(19) can be used to generalise the proof of Theorem 4 for these cases.
Further, as by Claim 4.1 the formula lingrid forces an infinite ascending chain of points, it is
not satisfiable when Lh has only Noetherian frames (like GL.3 or Grz.3). Similarly to the
K-case in Section 5, it is also possible to generate an infinite grid and then emulate counter
machine runs by going backwards in linear frames, and so to extend Theorem 4 to Noetherian
cases. The interested reader should consult [17], where all these issues are addressed in detail.

7 Decidable δ-products

The following theorem shows that the unbounded width of the second-component frames is
essential in obtaining the undecidability result of Theorem 2:

Theorem 6. L ×δ Alt(n) is decidable in coNExpTime, whenever L is K or Alt(m), for
0 < n,m < ω.

Proof. We prove the theorem for K ×δ Alt(n). The other cases are similar and left to the
reader. We show (by selective filtration) that if some formula φ does not belong to K×δAlt(n),
then there exists a δ-product frame for K ×δ Alt(n) whose size is exponential in φ where φ
fails. It will also be clear that the presence or absence of the diagonal is irrelevant in our
argument.

To begin with, we let sub(φ) denote the set of all subformulas of φ. For any ψ ∈ sub(φ),
we denote by hd(ψ) the maximal number of nested ‘horizontal’ modal operators (3h and

3〈W,R〉 is Noetherian if it contains no infinite ascending chains x0Rx1Rx2R . . . where xi 6= xi+1 for i < ω.
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2h) in ψ. Similarly, vd(ψ) denotes the ‘vertical’ nesting depth of ψ. Now suppose that
M, 〈rh, rv〉 6|= φ in some model M that is based on the δ-product of Fh = 〈Wh, Rh〉 and some
frame Fv = 〈Wv, Rv〉 for Alt(n). (Note that with δ in our language it is possible to force
cycles in the component frames of a δ-product, so we cannot assume that Fh and Fv are trees.)
For every k ≤ vd(φ), we define

Ukv := {y ∈Wv : there is a k-long Rv-path from rv to y}.

The Ukv are not necessarily disjoint sets for different k, but we always have

|Ukv | ≤ 1 + n+ n2 + · · ·+ nk ≤ 1 + k · nk. (28)

Then we define F′v := 〈W ′v, R′v〉 by taking

W ′v :=
⋃

k≤vd(φ)

Ukv , R′v := Rv ∩ (W ′v ×W ′v).

Next, for every m ≤ hd(φ), we define inductively Umh and Smh as follows. We let U0
h := {rh}

and S0
h := ∅. Now suppose inductively that we have defined Umh and Smh for some m < hd(φ).

For all x ∈ Umh , y ∈ W ′v, and 3hψ ∈ sub(φ) with M, 〈x, y〉 |= 3hψ, choose some zx,y,ψ from
Wh such that xRhzx,y,ψ and M, 〈zx,y,ψ, y〉 |= ψ. Then define

Um+1
h := {zx,y,ψ : x ∈ Umh , y ∈W ′v,3hψ ∈ sub(φ), M, 〈x, y〉 |= 3hψ},
Sm+1
h := {〈x, zx,y,ψ〉 : x ∈ Umh , y ∈W ′v,3hψ ∈ sub(φ), M, 〈x, y〉 |= 3hψ}.

Again, the Umh are not necessarily disjoint sets for different m, but by (28) we always have
that

|Umh | ≤
(
vd(φ) · nvd(φ) · |sub(φ)|

)m
. (29)

Then we define F′h := 〈W ′h, R′h〉 by taking

W ′h :=
⋃

m≤hd(φ)

Umh , R′h :=
⋃

m≤hd(φ)

Smh .

Clearly, by (28) and (29) the size of F′h ×δ F′v is exponential in the size of φ. Let M′ be the
restriction of M to F′h ×δ F′v. Now a straightforward induction on k, m and the structure of
formulas shows that for all k ≤ vd(φ), m ≤ hd(φ), ψ ∈ sub(φ),

M, 〈x, y〉 |= ψ iff M′, 〈x, y〉 |= ψ,

whenever x ∈ Uhd(φ)−m
h , y ∈ U vd(φ)−k

v , hd(ψ) ≤ m, and vd(ψ) ≤ k. It follows that M′, 〈rh, rv〉 6|=
φ, as required.

In certain cases the above proof gives polynomial upper bounds on the size of the falsifying
δ-product model, so we have:

Theorem 7. The validity problems of both S5 ×δ Alt(1) and Alt(1) ×δ Alt(1) are coNP-
complete.

Note that all the above results hold with Alt(n) being replaced by its serial4 version
DAlt(n). One should simply make the ‘final’ points in the filtrated component frames reflex-
ive.

4A frame 〈W,R〉 is called serial , if for every x in W there is y with xRy.
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8 Open problems

We have shown that in many cases adding a diagonal to product logics results in a dramatic
increase in their computational complexity (Sections 5 and 6), while in other cases upper
bounds similar to diagonal-free product logics can be obtained (Section 7). Here are some
related open problems:

1. Theorems 4 and 5 do not apply when the first component logic has transitive but not
necessarily weakly connected (linear) frames. In particular, while K4×S5 is decidable
in coN2ExpTime [8], it is not known whether K4×δ S5 remains decidable. Note that
it is not clear either whether we could somehow use Theorem 2 here, that is, whether
K ×δ S5 could be reduced to K4 ×δ S5. Note that the reduction of [13] from K × L
to K4 × L uses that K × L is determined by product frames having intransitive trees
as first components, and this is no longer true for K ×δ L. As is shown in Lemma 2.4
and Claim 2.1, the formula grid defined in (6)–(7) is satisfiable in a δ-product frame for
K×δ L, but forces a ‘horizontal’ non-tree structure.

2. By the above, K×δ K is properly contained in

Logic of(‘Intransitive trees’×δ ‘Intransitive trees’),

and Theorem 2 does not imply the undecidability of the latter. Is this logic decidable?
Note that it is not clear either whether the selective filtration proof of Theorem 6 could
be used here, as both component frames could be of arbitrary width. However, it might
be possible to generalise one of the several proofs showing the decidability of K ×K
[8, 7].

3. It can be proved using 2D type-structures called quasimodels that the diagonal-free
product logic K ×Alt(1) is decidable in ExpTime [7, Thm.6.6]. Is K ×δ Alt(1) also
decidable in ExpTime?

4. While δ-product logics are determined by δ-product frames by definition, there exist
other (non-product, ‘abstract’) δ-frames for these logics. The finite frame problem of
a logic L asks: “Given a finite frame, is it a frame for L?” If a logic L is finitely
axiomatisable, then its finite frame problem is of course decidable: one just has to
check whether the finitely many axioms hold in the finite frame in question. However,
as is shown in [19], many δ-product logics (K×δ K and K×δ K4 among them) are not
finitely axiomatisable. So the decidability of the finite frame problem is open for these
logics. Note that if every finite frame for, say, K ×δ K were the p-morphic image of a
finite δ-product frame, then we could enumerate finite frames for K×δ K. As K×δ K
is recursively enumerable by Theorem 1, we can always enumerate those finite δ-frames
that are not frames for K×δ K. So this would provide us with a decision algorithm for
the finite frame problem of K×δ K. However, consider the δ-frame F = 〈W,Rh, Rv, D〉,
where

W = {x, y, z}, D = {z},
Rh = {〈x, x〉, 〈y, y〉, 〈z, z〉, 〈y, z〉, 〈z, x〉, 〈y, x〉},
Rv = {〈x, x〉, 〈y, y〉, 〈z, z〉, 〈x, z〉, 〈z, y〉, 〈x, y〉}.

Then it is easy to see that F is a p-morphic image of 〈ω,≤〉 ×δ 〈ω ≤〉, but F is not a
p-morphic image of any finite δ-product frame.
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L. Aceto and A. Ingólfsdóttir, editors, Procs. FOSSACS-2006, volume 3921 of LNCS,
pages 217–230. Springer, 2006.

[30] W.V. Quine. Algebraic logic and predicate functors. In R. Rudner and I. Scheffer, editors,
Logic and Art: Essays in Honor of Nelson Goodman. Bobbs-Merrill, 1971. Reprinted
with amendments in The Ways of Paradox and Other Essays, 2nd edition, Harvard
University Press, Cambridge, Massachussetts, 1976.

[31] M. Reynolds. A decidable temporal logic of parallelism. Notre Dame J. Formal Logic,
38:419–436, 1997.

[32] M. Reynolds and M. Zakharyaschev. On the products of linear modal logics. J. Logic
and Computation, 11:909–931, 2001.

[33] R. Schmidt and D. Tishkovsky. Combining dynamic logic with doxastic modal logics. In
P. Balbiani, N-Y. Suzuki, F. Wolter, and M. Zakharyaschev, editors, Advances in Modal
Logic, Volume 4, pages 371–391. King’s College Publications, 2003.

[34] D. Scott. A decision method for validity of sentences in two variables. J. Symbolic Logic,
27:477, 1962.

26



[35] K. Segerberg. Modal logics with linear alternative relations. Theoria, 36:301–322, 1970.

[36] K. Segerberg. Two-dimensional modal logic. J. Philosophical Logic, 2:77–96, 1973.

[37] V. Shehtman. Two-dimensional modal logics. Mathematical Notices of the USSR
Academy of Sciences, 23:417–424, 1978. (Translated from Russian).

[38] V. Shehtman. On squares of modal logics with additional connectives. Procs. Steklov
Inst.Math., 274:317–325, 2011.

[39] E. Spaan. Complexity of Modal Logics. PhD thesis, Universiteit van Amsterdam, 1993.

[40] S. Tobies. Complexity results and practical algorithms for logics in knowledge represen-
tation. PhD thesis, Aachen, Techn. Hochsch., 2001.

[41] Y. Venema. Many-Dimensional Modal Logics. PhD thesis, Universiteit van Amsterdam,
1991.

[42] M. Wajsberg. Ein erweiterter Klassenkalkül. Monatsh Math. Phys., 40:113–126, 1933.

[43] F. Wolter. The product of converse PDL and polymodal K. J. Logic and Computation,
10:223–251, 2000.

27


