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1 INTRODUCTION

When can we say that a logic is a combination of others? In general, any logical system
having more than one connective can be considered as a combination of logical systems
having fewer connectives. In particular, any multimodal logic can be considered as a
combination of, say, unimodal logics. So, in this general sense, any result on multimodal
logics can be considered as a result on combining modal logics. What makes this chapter
special among other ones studying multimodal logics is that here we investigate the
following kind of problems:

Given a family L of modal logics and a combination method C, do certain properties
of the ‘component logics’ L ∈ L transfer to their ‘combination’ C(L)?

Most of the combination methods considered in this chapter satisfy the following three
criteria:

(C1) They are finitary, that is, C is defined only on finite families L of modal logics.
(C2) The combination C(L) of (multi)modal logics from L is a (multi)modal logic itself.
(C3) The combined logic C(L) is an extension of each component logic L ∈ L.

For each considered combination method, we discuss in detail the possible transfer of
the following two kinds of properties:
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• Axiomatisation/completeness.
There are two versions, depending on whether the combination method results
in a syntactically or semantically defined logic. In the former case, the question
is whether the combination of recursively (finitely) axiomatisable components re-
mains recursively (finitely) axiomatisable, and in the latter, whether the Kripke
completeness of the components transfers to their combination.

• Decidability/complexity of the validity/satisfiability problem.
We study whether decidability of the validity problem transfers from the compo-
nents to their combination and if so, what is the change in complexity. We also
discuss the possible transfer of the finite model property.

For transfer results about several other properties (like versions of interpolation, decid-
ability of various consequence relations, etc.) see [23] and the references therein. Com-
binations of deductive calculi (such as combined tableaux) are not considered either, see
Chapter 2 of this handbook for some examples.

Combination methods not satisfying (C1)–(C3) are in general out of our scope,
though see Section 5 for a discussion.

Notation and terminology. We will mainly consider possible world (or Kripke)
semantics. Kripke models are pairs M = 〈F,V〉 that are based on relational structures
F = 〈W,R1, . . . , Rn〉, where n > 0 is a natural number, W is a non-empty set and the
Ri are binary relations on it. Such structures are called n-frames (or frames, for short).
We say that an n-frame G = 〈U, S1, . . . , Sn〉 is a subframe of an n-frame F (G ⊆ F, in
symbols) if U ⊆ W and Si = Ri ∩ (U × U), for i = 1, . . . , n. A path of length k from
point x to point y in an n-frame F is a sequence 〈x0, . . . , xk〉 of points such that x0 = x,
xk = y and xiRjxi+1, for each i < k and some j, 1 ≤ j ≤ n. We call an n-frame F
rooted if there exists some x ∈W such that for every y ∈W , y 6= x there is a path from
x to y. Such an x is called a root of F. We say that F is of depth k if k is the length
of the longest path in F. If such a longest path does not exist, then we say that F is of
infinite depth. An n-frame F is called tree-like if it is rooted and R =

⋃n
i=1Ri is weakly

connected on the set {y ∈W | yRx} for every x ∈W . If a tree-like frame is well-founded
(i.e., there are no infinite descending R-chains . . . Rx2Rx1Rx0 of points) then we call F
a tree. The depth dF(x) of a point x in a tree F is defined to be the length of the unique
path from the root to x. If for no n < ω the point x is of depth n, then we say that x
is of infinite depth. By the co-depth of a point x in a tree F we understand the depth of
the subtree of F with root x.

Given a natural number n, the n-modal language MLn has propositional variables
p, q, s, . . . , Boolean connectives ¬, ∧, ∨, →, ↔, >, ⊥, and (unary) modal operators
21, . . . ,2n and 31, . . . ,3n. MLn-formulas are formed inductively in the usual way.
Given an MLn-formula ϕ, we let subϕ denote the set of all subformulas of ϕ, and
md(ϕ) denote the modal depth of ϕ. We will also use the following abbreviations. For
every formula ϕ, let

20ϕ = ϕ and, for n < ω, 2n+1ϕ = 22nϕ, 2≤nϕ =
∧
k≤n

2kϕ.

The truth-relation ‘(M, w) |= ϕ’ connecting syntax and semantics is defined by induc-
tion on the construction of ϕ as usual. We say that ϕ is true in M (M |= ϕ, in symbols),
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if M, w |= ϕ for all x ∈ W . A formula ϕ is said to be valid in a frame F (F |= ϕ, in
symbols), if M |= ϕ for every model M that is based on F. Given a set Σ of formulas,
we set

Fr Σ = {F | F |= ϕ, for all ϕ ∈ Σ}.

If M |= ϕ for all ϕ ∈ Σ then we say that M is a model for Σ. Similarly, ϕ is said to be a
frame for Σ, if F ∈ Fr Σ.

By an n-modal logic (or modal logic1, for short) we mean any set L of MLn-formulas
that contains all valid formulas of classical propositional logic, the formulas

(K) 2i(p→ q)→ (2ip→ 2iq),

and is closed under the rules of Substitution, Modus Ponens and Necessitation, for i =
1, . . . , n (see Chapter 2 of this handbook).

Let us briefly discuss two of the most common ways of defining a modal logic: the
‘syntactical’ way (via axioms) and the ‘semantical’ way (via a class of intended frames).
First, given a set Σ of MLn-formulas and an n-modal logic L, we say that L is ax-
iomatised by Σ, if L is the smallest n-modal logic containing Σ. If Σ can be chosen
a recursive (or finite) subset of all MLn-formulas, then we say that L is recursively
(finitely) axiomatisable. And second, given a class C of n-frames, the set

Log C = {ϕ | F |= ϕ, for all F ∈ C}

is always an n-modal logic. An n-modal logic L is called Kripke complete if L = Log C for
some class C of n-frames. In this case we also say that L is characterised (or determined)
by C. As is well-known, there exist incomplete modal logics, and similarly, there are
Kripke complete logics that are not recursively axiomatisable (see Section 3.4 for some
examples).

The validity problem for an n-modal logic L is the problem of deciding whether a
given MLn-formula belongs to L or not. If this problem is decidable (or recursively
enumerable) then we also say that the logic L is decidable (or recursively enumerable).
A related problem is the satisfiability problem for L: given ϕ, decide whether ϕ is L-
satisfiable, that is, whether there exists a model M for L and a world w in M such that
M, w |= ϕ holds. It is easy to see the connection between the two: ϕ ∈ L iff ¬ϕ is not
L-satisfiable. Given a recursively enumerable logic L, we can have a decision algorithm
for L if we can enumerate those formulas that are not in L. Clearly, this can be done if:

• the class of finite frames for L is recursively enumerable (up to isomorphism, of
course), and

• L has the finite model property2, that is

L = Log {F ∈ FrL | F is finite}.

This chapter is not self-contained in the sense that we discuss well-known modal logics
like K, S5, KD45, K4, S4, K4.3, GL, Grz, Alt, etc. without defining them. We
also use without explicit reference standard notions and results from basic modal logic,

1We consider here what are usually called normal modal logics only.
2It would be more precise to call this finite frame property. However, as is well-known, it is equivalent

to saying that L = {ϕ |M |= ϕ, for all finite models M for L}.
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such as p-morphisms and disjoint unions, generated subframes, unravelling, results on
Sahlqvist formulas and canonicity, etc. For notions and statements not defined or proved
here, see other chapters in this handbook or [12, 10].

2 FUSION OF MODAL LOGICS

Within the constraints (C1)–(C3) above, the formation of fusions (also known as in-
dependent joins), is the simplest and perhaps the most natural way of combining modal
logics:

DEFINITION 1. Let L1 and L2 be two modal logics formulated in languagesMLn and
MLm in such a way that they have disjoint sets of modal operators (say, 21, . . . ,2n and
2n+1, . . . ,2n+m, respectively). Then the fusion

L1 ⊗ L2

of L1 and L2 is the smallest (n+m)-modal logic L containing both L1 and L2.

It is easy to see that if each Li is axiomatised by a set Σi of axioms (written in the
respective languages) then L1 ⊗ L2 is axiomatised by the union Σ1 ∪ Σ2. This means
that no axiom containing modal operators from both of the languages of L1 and L2 is
required to axiomatise L1 ⊗ L2. In other words, in fusions the modal operators of the
component logics are kind of ‘independent,’ they ‘do not interact’.

The formation of fusions is clearly an associative binary operation on modal logics.
Therefore, one can define the fusion

L1 ⊗ L2 ⊗ · · · ⊗ Ln

of n modal logics in a straightforward way, for any natural number n ≥ 2. Observe
that well-known multimodal logics like Kn or S5n are the fusions of their unimodal
‘counterparts’:

Kn = K⊗ · · · ⊗K︸ ︷︷ ︸
n

, S5n = S5⊗ · · · ⊗ S5︸ ︷︷ ︸
n

.

The formation of fusions as a combination method does satisfy criterion (C3), as the
following result of Thomason [78] shows:

THEOREM 2. The fusion of consistent modal logics is a conservative extension of the
components.

2.1 Transfer results

We begin with the following result of Kracht and Wolter [48], and Fine and Schurz [16]
stating that Kripke completeness of the components transfers to their fusion:

THEOREM 3. If modal logics L1 and L2 are characterised by classes of frames C1 and
C2, respectively, and if C1 and C2 are closed under the formation of disjoint unions and
isomorphic copies, then the fusion L1 ⊗ L2 of L1 and L2 is characterised by the class

C1 ⊗ C2 =
{
〈W,R1, . . . , Rn, S1, . . . , Sm〉 | 〈W,R1, . . . , Rn〉 ∈ C1, 〈W,S1, . . . , Sm〉 ∈ C2

}
.
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It should be clear that if C1 and C2 determine logics L1 and L2, respectively, then
all frames in C1 ⊗ C2 are frames for the fusion L1 ⊗ L2. Let us outline the proof of the
converse statement, i.e., that C1⊗C2 actually characterises L1⊗L2. To simplify notation,
we assume that L1 and L2 are unimodal logics with the boxes 21 and 22, respectively.
The fusion L = L1 ⊗ L2 is then a bimodal logic in the language ML2.

With each ML2-formula ϕ of the form 2iψ (i = 1, 2) we associate a new variable qϕ
which will be called the surrogate of ϕ. For an ML2-formula ϕ containing no surrogate
variables, denote by ϕ1 the formula that results from ϕ by replacing all its subformulas of
the form 22ψ, which are not within the scope of other 22, with their surrogate variables
q22ψ. So ϕ1 is a unimodal formula containing only 21. Let

Θ1(ϕ) = {p | p is a variable in ϕ} ∪ {χ ∈ sub22ψ | 22ψ ∈ subϕ}.

The formula ϕ2 and the set Θ2(ϕ) are defined symmetrically.
Suppose now that ϕ is satisfiable in a model based on a frame for L. We need to

construct a frame in C1 ⊗ C2 satisfying ϕ. As we know only how to build frames for the
unimodal fragments of L, the frame is constructed step-by-step alternating between 21

and 22.
Note first that since L1 is characterised by C1, there is a model M based on a frame

in C1 and satisfying ϕ1 at a point r. Our aim now is to ensure that the formulas of the
form 22ψ have the same truth-values as their surrogates q22ψ. To do this, with each
point x in M we can associate the formula

ϕx =
∧
{ψ ∈ Θ1(ϕ) | (M, x) |= ψ1} ∧

∧
{¬ψ | ψ ∈ Θ1(ϕ), (M, x) 6|= ψ1},

construct a model Mx based on a frame in C2 and satisfying ϕ2
x in a world y, and then

hook Mx to M by identifying x and y. After that we can switch to 21 and in the same
manner ensure that formulas 21ψ have the same truth-values as q21ψ at all points in
every Mx, and so on. In this construction we use the fact that C1 and C2 are closed under
isomorphic copies and disjoint unions: the Mx should be mutually disjoint and the final
model is the union of the models constructed at each step. Note that this construction
is a special case of fibring semantics that is called iterated dovetailing [19, 20].

However, to realise this quite obvious scheme, we must be sure that ϕ2
x is really

satisfiable in a frame for L2, which may impose some restrictions on the models we
choose. First, in the construction above it is enough to deal with points x accessible
from r in at most md(ϕ) steps; no other point has any influence on the truth of ϕ at r.
Let X be the set of all such points. Now, a sufficient and necessary condition for ϕx to
be satisfiable in a frame for L (and so for ϕ2

x to be satisfiable in a frame for L2) can be
formulated using the following general description of formulas of type ϕx.

Suppose Γ is a finite set of formulas closed under subformulas. Define the consistency-
set C(Γ) of Γ by taking

C(Γ) = {ψ∆ | ∆ ⊆ Γ},

where for ∆ ⊆ Γ,
ψ∆ =

∧
{χ | χ ∈ ∆} ∧

∧
{¬χ | χ ∈ Γ−∆}.

In particular, for all x ∈ X, we have ϕx ∈ C(Θ1(ϕ)). Given a formula ϕ, define

Σ1(ϕ) = {ψ ∈ C(Θ1(ϕ)) | ¬ψ /∈ L}, Σ2(ϕ) = {ψ ∈ C(Θ2(ϕ)) | ¬ψ /∈ L}.
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The formulas in Σi(ϕ) can be regarded as ‘state descriptions’ of the points in the possible
models with respect to the formulas in Θi(ϕ). In particular, for all x ∈ X, ϕx is satisfiable
in a frame for L iff ϕx ∈ Σ1(ϕ). In other words, we should start with a model M satisfying
ϕ1∧2

≤md(ϕ)
1 (

∨
Σ1(ϕ))1 at a point r. Of course, the subsequent models Mx must satisfy

ϕ2
x∧2

≤md(ϕ)
2 (

∨
Σ2(ϕx))2 at all points x ∈ X, and so on. The interested reader may find

more details in [48], [16].

Since the closure under finite disjoint unions is enough when we work with finite
frames, we obtain the following:

THEOREM 4. If both L1 and L2 are modal logics having the finite model property, then
their fusion L1 ⊗ L2 has the finite model property as well.

As is shown by Wolter [82], decidability of the components also transfers to their fusion:

THEOREM 5. If L1 and L2 are both decidable modal logics then L1⊗L2 is decidable as
well.

Further results showing that other important properties (such as Halldén completeness,
decidability of the global consequence relation, uniform interpolation property) of modal
logics are preserved under fusions were obtained in [48, 82].

As is discussed in Chapter 6 of this handbook, from the algebraic point of view every
modal logic L can be regarded as the equational theory of modal algebras generated by
the equations {‘ϕ = 1’ | ϕ ∈ L}. Thus, the problem of whether decidability is preserved
under the formation of fusions of modal logics is an instance of the more general question:
under which conditions does the decidability of two equational theories T1 and T2 imply
the decidability of the union T1 ∪ T2. The shared Boolean connectives impose special
conditions on these equational theories; see the results of Ghilardi [29] that put the
fusion construction to this more general context. Other extensions of Theorem 5 to
fusions sharing not only the Booleans but also a universal modality and nominals are
discussed in [30], and to fusions of non-normal modal logics in [6, 4].

2.2 Complexity of fusions

Unlike the properties considered above, upper complexity bounds do not always transfer
under the formation of fusions (the lower bounds are inherited by Theorem 2 as long
as we take fusions of consistent logics). The known decision procedures provide a time
complexity bound for the fusion that is non-deterministic and one exponent higher than
the maximal time complexity of the components. However, in general it is not known
whether this increase in complexity is unavoidable. In particular, it is not known whether
PSPACE- or EXPTIME-completeness transfers under the formation of fusions (see
Theorem 7 below for some special cases when it actually does).

The following characterisation of the transfer of coNP-completeness was given by
Spaan [77]. In order to formulate her theorem, we require the following notion. Say that
a frame 〈W ′, R′〉 is a skeleton subframe of a frame 〈W,R〉 if W ′ ⊆ W and R′ ⊆ R. We
use ◦ to denote reflexive points and • for irreflexive ones.

THEOREM 6. Suppose that the unimodal logics L1 and L2 are characterised by classes
C1 and C2 of frames, resprectively, that are closed under the formation of isomorphic
copies and disjoint unions. Then there are the following three cases for the complexity of
L1 ⊗ L2 (below {i, j} = {1, 2}):
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(1) L1 ⊗ L2 is coNP-complete.

(2) Ci consists of disjoint unions of singleton frames. In this case L1⊗L2 is polynomially
reducible to Log(Cj).

(3) L1 ⊗ L2 is PSPACE-hard, whenever one of the following six cases holds:

(i) r r r-� and r r- are skeleton subframes of some frames in Ci and Cj, respectively;

(ii) b r r-- and r r- are skeleton subframes of some frames in Ci and Cj, respectively;

(iii) r b r-- and r r- are skeleton subframes of some frames in Ci and Cj, respectively;

(iv) r r r-- and b r- are skeleton subframes of some frames in Ci and Cj, respectively;

(v) r r r-- and b r- are skeleton subframes of a frame in Ci and r r-� is a skeleton
subframe of a frame in Cj;

(vi) r r r-- and b r- are skeleton subframes of a frame in Ci and r b- is a skeleton
subframe of a frame in Cj.

A close inspection of this result shows that almost all interesting fusions are PSPACE-
hard. (An exception is the fusion Alt ⊗Alt of two Alt logics that is coNP-complete
by Theorem 6. We remind the reader that Alt is the coNP-complete logic determined
by all functional frames.) In fact, the proof of Halpern and Moses [35] can be easily
modified to obtain the following result on a matching upper bound for several ‘standard’
fusions:

THEOREM 7. Let n > 1 and Li ∈ {K,T,K4,S4,KD45,S5}, for all 1 ≤ i ≤ n. Then
L1 ⊗ · · · ⊗ Ln is PSPACE-complete.

Note that while K, T, K4 and S4 are PSPACE-complete themselves, KD45 and S5
are coNP-complete.

3 PRODUCT OF MODAL LOGICS

The formation of Cartesian products of various structures—vector and topological spaces,
algebras, etc.—is a standard mathematical way of capturing the multidimensional char-
acter of our world. In modal logic, products of Kripke frames are natural constructions
allowing us to reflect interactions between modal operators representing time, space,
knowledge, actions, etc. The product construction as a combination method on modal
logics was introduced in [74, 75, 24] and has been used in applications in computer science
and artificial intelligence ever since (see, e.g., [68, 15, 7, 69, 18], and [23] and references
therein).

DEFINITION 8. The product of two n-frames frames F1 =
〈
W1, R

1
1, . . . , R

n
1

〉
and F2 =〈

W2, R
1
2, . . . , R

m
2

〉
is the (n+m)-frame

F1 × F2 =
〈
W1 ×W2, R

1
h, . . . , R

n
h , R

1
v, . . . , R

m
v

〉
where W1 ×W2 = {〈u, v〉 | u ∈W1, v ∈W2} and, for all u1, u2 ∈W1 and v1, v2 ∈W2,

〈u1, v1〉Rih 〈u2, v2〉 iff u1R
i
1u2 and v1 = v2 (1 ≤ i ≤ n),

〈u1, v1〉Rjv 〈u2, v2〉 iff u1 = u2 and v1R
j
2v2 (1 ≤ j ≤ m).
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Such a frame will be called a product frame. The subscripts h and v appeal to the
geometrical intuition of considering the Rih as ‘horizontal’ accessibility relations in F1×F2

and the Rjv as ‘vertical’ ones; see Fig. 1 for an illustration.
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Figure 1. Product frames.

It is not hard to see that the product construction commutes with the three basic
operations on frames:

PROPOSITION 9. For all frames F, G, H, Hi, i ∈ I, the following hold:

(i) If F is a p-morphic image of H, then F×G is a p-morphic image of H×G.

(ii) If F is a generated subframe of H, then F×G is a generated subframe of H×G.

(iii) If F is a disjoint union of Hi, i ∈ I, then F×G is isomorphic to the disjoint union
of Hi ×G, i ∈ I.

Products of Kripke frames can be used to define a natural combination method on
modal logics:

DEFINITION 10. Let L1 and L2 be two Kripke complete modal logics formulated in
languagesMLn andMLm in such a way that they have disjoint sets of modal operators
(say, 21, . . . ,2n and 2n+1, . . . ,2n+m, respectively). Then the product of L1 and L2 is
the modal logic

L1 × L2 = Log{F1 × F2 | Fi ∈ FrLi, i = 1, 2}.
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For example, Kn ×Km is the (n+m)-modal logic determined by all product frames
F1 × F2, where F1 is an n-frame and F2 an m-frame; S4 × S5 is the bimodal logic
determined by all product frames F1×F2 such that F1 is reflexive and transitive, and F2

is an equivalence frame.
Note that the product of Kripke complete modal logics is always Kripke complete by

definition. It is important to emphasise that in order to make the product construction a
well-defined combination method on Kripke complete modal logics, we have to consider
products of all possible Kripke frames for L1 and L2. The reason is that even if Log C1 =
Log C′1 and Log C2 = Log C′2, then we can have

Log{F1 × F2 | Fi ∈ Ci, i = 1, 2} 6= Log{F1 × F2 | Fi ∈ C′i, i = 1, 2},

see [23] for examples.
There are several attempts for extending the product construction from Kripke com-

plete logics to arbitrary modal logics, mainly by considering product-like constructions
on Kripke models, see [37, 23]. All the suggested methods so far result in sets of formulas
that are not closed under the rule of Substitution, thus do not satisfy our criterion (C2).
Van Benthem et al . [79] show that by defining a product-like operator on their topological
semantics, one can get back the fusion of modal logics determined by transitive frames.

Once the two-dimensional definition is given, there are essentially two ways of defining
products of three or more modal logics. First, we can generalise in a straightforward
way the definitions above. To simplify notation, from now on we will mostly consider
products of unimodal frames and logics only. (However, we will discuss the multimodal
versions in those cases when it does make a difference.)

DEFINITION 11. Given a natural number n > 1, the product of frames F1 = 〈W1, R1〉,
F2 = 〈W2, R2〉, . . . , Fn = 〈Wn, Rn〉 is the n-frame

F1 × · · · × Fn =
〈
W1 × · · · ×Wn, R̄1, . . . , R̄n

〉
where, for each i = 1, . . . , n, R̄i is a binary relation on W1 × · · · ×Wn such that

〈u1, . . . , un〉 R̄i 〈v1, . . . , vn〉 iff uiRivi and uk = vk, for k 6= i.

Then, given Kripke complete (uni)modal logics Li formulated in the language having 2i

(i = 1, . . . , n), the product of L1, . . . , Ln is the n-modal logic

L1 × · · · × Ln = Log{F1 × · · · × Fn | Fi ∈ FrLi, i = 1, . . . , n}.

For example, Kn =

n︷ ︸︸ ︷
K× · · · ×K is the logic determined by all n-dimensional product

frames; S5n is the logic determined by all product frames F1 × · · · × Fn, where each Fi
is a (possible different) equivalence frame.

The second way would be to define L1×· · ·×Ln as (((L1×L2)×L3)×· · ·×Ln−1)×Ln.
The easily established fact that the frame F1 × · · · × Fn is isomorphic to

(((F1 × F2)× F3)× · · · × Fn−1)× Fn

might seem to suggest that the two definitions are equivalent. However, the situation is
not that simple. For example, it is not known whether the equalities

K4 ?= K3 ×K and S54 ?= S53 × S5
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hold. The problem here is that K4 is characterised by the class of products of four
1-frames, while K3 × K by the class of products of arbitrary (that is, not necessarily
product) 3-frames for K3 and 1-frames for K. Now, the thing is that these arbitrary
K3-frames are not necessarily isomorphic to product frames (in fact, we do not even
know what they look like; see Theorem 25).

For this reason, we take Definition 11 above as the ‘official’ definition of higher dimen-
sional product logics. Note, however, that in Section 3.3 we provide a characterisation of
arbitrary (countable) frames for K×K and S5×S5 (among many other two-dimensional
product logics), and prove—with the help of this characterisation—that for many three-
dimensional products the two definitions actually coincide. For instance,

K3 = (K×K)×K and S53 = (S5× S5)× S5,

see Corollary 23.

3.1 General transfer results

Compared to fusions, there are very few general transfer results for products. In fact,
as we shall see in Sections 3.3 and 3.4, for many cases the lack of transfer of finite
axiomatisability and decidability is the ‘norm’.

In this section we discuss some basic properties of the product construction and the
very few general transfer results about it. To begin with, observe that in the definition
of product logics it is enough to consider only rooted frames for the component logics.
Indeed, the inclusion

L1 × · · · × Ln ⊆ Log{F1 × · · · × Fn | Fi is a rooted frame for Li, i = 1, . . . , n}

should be clear. To show the converse, suppose ϕ /∈ L1 × · · · × Ln, i.e., ϕ is refuted at a
point 〈u1, . . . , un〉 in some model based on a product frame F1 × · · · × Fn, where Fi is a
frame for Li, i = 1, . . . , n. For each i, let Gi be the subframe of Fi generated by ui. Then
Gi is also a frame for Li, for i = 1, . . . , n. On the other hand, it is readily checked that
G1 × · · · ×Gn is isomorphic to the subframe of F1 × · · · × Fn generated by 〈u1, . . . , un〉.
Thus we obtain the following:

PROPOSITION 12. For all Kripke complete modal logics L1, . . . , Ln,

L1 × · · · × Ln = Log{F1 × · · · × Fn | Fi is a rooted frame for Li, i = 1, . . . , n}.

For instance, S5n is determined by products of universal frames 〈Wi,Wi ×Wi〉, i =
1, . . . , n. Moreover, each such ‘universal product frame’ is a p-morphic image of a cubic
universal product frame, i.e., the nth power of the same universal frame 〈W,W ×W 〉.
Indeed, it is easy to see that if a set W is such that there are surjections fi : W → Wi,
for i = 1, . . . , n, then the map f defined by

f(w1, . . . , wn) = 〈f1(w1), . . . , fn(wn)〉

is a p-morphism from the frame 〈W,W ×W 〉n onto

〈W1,W1 ×W1〉 × · · · × 〈Wn,Wn ×Wn〉 .
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Such a set and surjections can be found, for example, by taking the disjoint union of the
Wi as W and defining fi so that it is the identity map on Wi and arbitrary otherwise.
Therefore, we obtain:

PROPOSITION 13. S5n is determined by the class of all cubic universal product frames.

The formation of products as a combination method satisfies criterion (C3), as the
following proposition shows:

PROPOSITION 14. For all Kripke complete modal logics L1, . . . , Ln,

L1 ⊗ · · · ⊗ Ln ⊆ L1 × · · · × Ln.

Proof. Given a product frame F1 × · · · × Fn =
〈
W1 × · · · ×Wn, R̄1, . . . , R̄n

〉
such that

each Fi = 〈Wi, Ri〉 is a frame for Li (i = 1, . . . , n), fix some 1 ≤ i ≤ n. For every
n− 1-tuple ūi = 〈u1, . . . , ui−1, ui+1, . . . , un〉 with uj ∈Wj , for j 6= i, we take the set

Wūi = {〈u1, . . . , un〉 | ui ∈Wi, 〈u1, . . . , ui−1, ui+1, . . . , un〉 = ūi},

and let Sūi be the restriction of R̄i to Wūi , i.e., Sūi = R̄i ∩ (Wūi ×Wūi). Then we have:

• 〈Wūi
, Sūi
〉 is isomorphic to 〈Wi, Ri〉;

•
〈
W1 × · · · ×Wn, R̄i

〉
is the disjoint union of the frames 〈Wūi

, Sūi
〉, for all n − 1-

tuples ūi.

�

As we shall see in Section 3.3, the inclusion in Proposition 14 is proper: product logics
always include certain interactions between the modal operators of their components.
Note, however, that the modal operators within each component are not affected by
these interactions, that is, the product L1×· · ·×Ln of consistent Kripke complete logics
L1, . . . , Ln is a conservative extension of each of them. One can even show a slightly
stronger statement:

PROPOSITION 15. Let L1, . . . , Ln, Ln+1 be consistent Kripke complete unimodal logics.
Then the logic L1 × · · · × Ln × Ln+1 is a conservative extension of L1 × · · · × Ln, i.e.,
for every MLn-formula ϕ,

ϕ ∈ L1 × · · · × Ln iff ϕ ∈ L1 × · · · × Ln × Ln+1.

Proof. We prove this only for the case L1 = · · · = Ln = L; the general case is considered
in a similar way. First, it is readily checked that for any n+1-dimensional product frame

F =
〈
W1 × · · · ×Wn ×Wn+1, R̄1, . . . , R̄n, R̄n+1

〉
,

the projection map f(w1, . . . , wn, wn+1) = 〈w1, . . . , wn〉 is a p-morphism from the ‘n-
reduct’

F(n) =
〈
W1 × · · · ×Wn ×Wn+1, R̄1, . . . , R̄n

〉
of F onto the n-dimensional product frame F− =

〈
W1 × · · · ×Wn, R̄1, . . . , R̄n

〉
.

Now suppose that ϕ ∈ Ln+1 and G is an n-dimensional product frame for Ln. As
L is consistent and Kripke complete, there exists a frame H for L. Then the product
F = G× H is a frame for Ln+1, and so F |= ϕ. Since F− = G, we finally obtain G |= ϕ.

Conversely, suppose that ϕ ∈ Ln, and let F be an n + 1-dimensional product frame
for Ln+1. Then clearly F− is a frame for Ln, and so F |= ϕ. �
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A useful property of certain product logics that sometimes they are determined by
their countable product frames:

THEOREM 16. Let Li be a Kripke complete unimodal logic such that FrLi is first-order
definable in the language having equality and a binary predicate symbol Ri, for each
i = 1, . . . , n. Then L1 × · · · × Ln is determined by the class of its countable product
frames.

Proof. For each i, let Γi denote the first-order theory defining FrLi in the language Ln
having equality and binary predicate symbols R1, . . . , Rn. Now let L×n be the n+1-sorted
extension of Ln that has the binary predicate symbols R1, . . . , Rn of sort 0, countably
many unary predicate symbols P0, P1, . . . of sort 0, and for each sort i (i = 1, . . . , n) a
unary function symbol fi taking an argument of sort 0 and returning a value of sort i. For
each φ ∈ Γi, denote by φ′ the formula obtained by substituting fi(x) for all occurrences
of each variable x in φ (i = 1, . . . , n). Let

Σ = {φ′ | φ ∈ Γi, i = 1, . . . , n} ∪ {π},

where π is the following sentence:

∀x∀y
(
f1(x) = f1(y) ∧ · · · ∧ fn(x) = fn(y)→ x = y

)
∧ ∀x1 . . . ∀xn∃y

(
f1(y) = x1 ∧ · · · ∧ fn(y) = xn

)
∧

n∧
i=1

∀x∀y
(
xRiy ↔

(
fi(x)Rifi(y) ∧

n∧
j=1
j 6=i

fj(x) = fj(y)
))

(here x and y are variables of sort 0, and xi is of sort i, for i = 1, . . . , n). Now suppose
that ϕ /∈ L1 × · · · × Ln, for some MLn-formula ϕ. Then ϕ is not true in a model
M = 〈F,V〉 based on the product F1×· · ·×Fn of frames Fi = 〈Wi, Si〉 such that Fi |= Γi
for i = 1, . . . , n. Define a first-order L×n -structure I by taking

I =
〈
W1 × · · · ×Wn,W1, . . . ,Wn; S̄1, . . . , S̄n,V(p0),V(p1), . . . , pr1, . . . , prn

〉
,

where pri : W1×· · ·×Wn →Wi are the projection functions. It is easy to see that I |= Σ.
Since without the extra sorts and the projections I is nothing but the modal model M
considered as a first-order structure, we also have I 6|= ∀xϕ?(x) (where ϕ? is the standard
translation of ϕ). In other words, Σ′ = Σ ∪ {∃x¬ϕ?(x)} is true in I. By the downward
Löwenheim–Skolem–Tarski theorem, there is a countable first-order L×n -structure

J =
〈
U,U1, . . . , Un; , RJ1 , . . . , R

J
n, P

J
0 , P

J
1 , . . . , f

J
1 , . . . , f

J
n

〉
such that J |= Σ′. For each i = 1, . . . , n, define

Qi = {
〈
fJi (u), fJi (v)

〉
| 〈u, v〉 ∈ RJi },

and for each j < ω,
P I

′

j = {
〈
fJ1 (w), . . . , fJn (w)

〉
| w ∈ P Jj }.

Since J |= π, the map h(w) =
〈
fJ1 (w), . . . , fJn (w)

〉
is an isomorphism between J and the

first-order L×n -structure

I ′ =
〈
U1 × · · · × Un, U1, . . . , Un; Q̄1, . . . , Q̄n, P

I′

0 , P
I′

1 , . . . , pr1, . . . , prn

〉
.
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Thus, I ′ |= Σ and I ′ 6|= ∀xϕ?(x). Let Gi = 〈Ui, Qi〉, i = 1, . . . , n. Define a valuation
W in the (countable) product frame G = G1 × · · · × Gn by taking W(pj) = P I

′

j for
j < ω. As without the extra sorts and the projections I ′ is just a (countable) modal
model N = 〈G,W〉 considered as a first-order structure, this means that ϕ is not true in
N.

Note that in fact we have also proved that

ϕ ∈ L1 × · · · × Ln iff Σ |= ∀xϕ?(x), (1)

for any MLn-formula ϕ. �

In many cases recursive enumerability of the components transfers to their product:

THEOREM 17. Let Li be a Kripke complete unimodal logic such that FrLi is definable
by a recursive set of first-order sentences in the language having equality and a binary
predicate symbol Ri, for each i = 1, . . . , n. Then the product logic L1 × · · · × Ln is
recursively enumerable.

Proof. We use the notation of the proof of Theorem 16. Since now the sets Γi are
recursive, Σ is recursive as well. And since the consequence relation of first-order logic is
recursively enumerable, it follows from (1) that L1 × · · · × Ln is recursively enumerable.

�

3.2 Connections with other formalisms

The product construction shows up in various disguises, here we discuss three exam-
ples: first-order logics, ‘interpreted systems’ for temporal epistemic logics, and modal
extensions of description logics.

First-order classical and modal logics

Let us fix a natural number n > 0 and consider the fragment of classical first-order logic
that

• uses n individual variables x1, . . . , xn,

• contains neither equality, nor individual constants, nor function symbols, and

• whose atomic formulas are of the form P (x1, . . . , xn), where P is an n-ary predicate
symbol.

This fragment can be regarded as the ‘n-variable substitution- and equality-free fragment ’
of classical first-order logic. The following map ·• provides a one-to-one correspondence
between formulas of this fragment and MLn-formulas:

Pi(x1, . . . , xn)• = pi (ϕ ∧ ψ)• = ϕ• ∧ ψ•,
(¬ϕ)• = ¬ϕ•, (∃xiψ)• = 3iψ

• (1 ≤ i ≤ n).

It is not hard to see that, for every first-order formula of the fragment,

ϕ is first-order valid iff ϕ• ∈ S5n.

Indeed, every first-order structure I =
〈
DI , . . . , P Ii , . . .

〉
can be considered as a modal

model M(I) = 〈〈W, . . . , Ri, . . .〉 ,V〉, where
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• W is the set of all variable assignments in I, i.e., the set of all functions from the
variables x1, . . . , xn into DI ;

• aRib iff a(xj) = b(xj) for all variables xj different from xi, 1 ≤ i ≤ n;

• V(pi) = P Ii .

The set W of all assignments in I can be regarded as the nth Cartesian power of the
domain DI . The underlying frame of M(I) then turns into a product frame for S5n:
the nth power of the universal S5-frame

〈
DI , DI ×DI

〉
. On the other hand, S5n is

determined by such cubic universal product frames by Proposition 13.
The idea of such a ‘modal approach’ to classical first-order logic was suggested by

Quine [66] and Kuhn [51] and fully realised by Venema [80]. ‘Approximating’ first-
order logic with logical systems of propositional character was an important motive
in the algebraic treatment of classical first-order logic; see the work of Tarski and his
school [38, 39, 1, 11, 13, 34, 62]. The modal algebras (see Chapter 6 of this handbook)
corresponding to the product logic S5n are known in the algebraic logic literature as
diagonal-free cylindric set algebras of dimension n.

As is shown in [23], a similar connection can be established between n-variable frag-
ments of quantified modal logics L (with constant domains) and n+1-dimensional product
logics of the form

L×
n︷ ︸︸ ︷

S5× · · · × S5 .

Temporal epistemic logics

Here we briefly discuss the connections to the ‘interpreted systems’ approach proposed
by Fagin et al . [15] which gives rise to various combinations of propositional temporal
and epistemic logics ranging from fusions to products of these logics.

Suppose S is a non-empty set (of ‘states’) and F = 〈T,<〉 is a strict linear order (the
‘flow of time’). Suppose also that R is a non-empty set of functions from T to S (the
available ‘runs of events’ over F), and let R1, . . . , Rn be binary relations on T ×R. Then
the tuple

S = 〈T,R, <,R1, . . . , Rn〉

is called a interpreted system. A valuation V in S is a function from the set of proposi-
tional variables into the set 2S of all subsets of S. The pair M = 〈S,V〉 is called a model
based on S.

We interpret the modal language MLn+1 at 〈timepoint,run〉 pairs in these models.
21 represents the temporal operator ‘always in the future’, while 22, . . . ,2n+1 represent
the respective knowledge of n agents:

• (M, 〈t, f〉) |= p iff f(t) ∈ V(p),

• (M, 〈t, f〉) |= ϕ ∧ ψ iff (M, 〈t, f〉) |= ϕ and 〈t, f〉 |= ψ,

• (M, 〈t, f〉) |= ¬ϕ iff not (M, 〈t, f〉) |= ϕ,

• (M, 〈t, f〉) |= 21ϕ iff (M, 〈t′, f〉) |= ϕ whenever f ′ > f ,

• (M, 〈t, f〉) |= 2iϕ iff (M, 〈t′, f ′〉) |= ϕ whenever 〈t, f〉Ri−1 〈t′, f ′〉 (i = 2, . . . , n+1).
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We say that ϕ is true in M if (M, 〈t, f〉) |= ϕ holds, for every 〈t, f〉 ∈ T ×R.
Given a propositional temporal logic Log C1 determined by a class C1 of strict linear

orders and an n-modal epistemic logic L determined by a class C2 of n-frames, we can
obtain a ‘combined’ temporal-epistemic logic by considering allMLn+1-formulas that are
true in all models that are based on interpreted systems of the form 〈T,R, <,R1, . . . , Rn〉
such that 〈T,<〉 ∈ C1 and 〈T ×R, R1, . . . , Rn〉 ∈ C2. By Theorem 3, this combined logic
is just the fusion of Log C1 and L.

By imposing various constraints on interpreted systems, we can reflect some interesting
features of agents. An interpreted system S models agents who know the time if, for all
t, t′ ∈ T , f, f ′ ∈ R, and i = 1, . . . , n,

〈t, f〉Ri 〈t′, f ′〉 implies t = t′.

In other words, if Ai believes that at moment t relative to an evolution f the pair 〈t′, f ′〉
represents a possible state of affairs, then t = t′. So at each moment t the agents are
assumed to know that the clock is at t. Systems represented by structures of this type
are known as synchronous.

An interpreted system models agents who do not learn if, for all agents Ai, f, f ′ ∈ R
and t, t′ ∈ T , we have

〈t, f〉Ri 〈t′, f ′〉 implies ∀s ≥ t ∃s′ ≥ t′ 〈s, f〉Ri 〈s′, f ′〉 .

Intuitively, an agent Ai does not learn if, whenever it regards w as a possible state of
affairs at moment t, then it regards w as a possible state of affairs at every moment
s ≥ t as well. Under the condition that agents know the time, this means that if agent
Ai regards an evolution f ′ as possible at t then it regards f ′ as possible at every s > t.
Similarly, an interpreted system models agents who do not forget if, for all Ai, t, t′ ∈ T
and f, f ′ ∈ R, we have

〈t, f〉Ri 〈t′, f ′〉 implies ∀s ≤ t ∃s′ ≤ t′ 〈s, f〉Ri 〈s′, f ′〉 .

Systems of this type are known also as systems with perfect recall.
If an interpreted system models agents who know time, do not forget and do not learn,

then, for all agents Ai, t, t′ ∈ T and f, f ′ ∈ R, we have

〈t, f〉Ri 〈t′, f ′〉 implies t = t′ and ∀s 〈s, f〉Ri 〈s, f ′〉 .

Thus, the interpretation ofMLn+1-formulas in S corresponds to evaluating them in the
product of frames F = 〈T,<〉 and 〈R, S1, . . . , Sn〉, where

fSif
′ iff ∃t, t′ ∈ T 〈t, f〉Ri 〈t′, f ′〉 iff ∀t ∈ T 〈t, f〉Ri 〈t, f ′〉 .

‘Modal’ description logics

As is discussed in Chapter 13 of this handbook, originally description logics have been
designed and used as a formalism for knowledge representation and reasoning only in
‘static’ application domains. Later on, several attempts have been made in the literature
in order to extend description logics with ‘dynamic’ features such as knowledge as time-
or action-dependence, beliefs of different agents, etc. (see, e.g., [72, 71, 57, 32, 7, 3, 5,
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84, 86, 88]). Here we briefly describe a simple ‘modal’ extension of the basic concept
language ALC (see Chapter 13 of this handbook) and its connection to products.

Imagine, for instance, a car salesman John who, besides standard ABox and TBox
knowledge bases (see Chapter 13 of this handbook), also wants to include ‘modalised’
concepts such as describing a Customer as

Homo sapiens u 〈sometime in the past〉 ∃buys.Car,

or a Potential customer as

[John believes] 〈eventually〉Customer.

Concept descriptions in the extended concept language MLALCn that is able to express
these can be formed according to the following rules:

C,D → A | > | ⊥ | ¬C | C uD | C tD | ∀r.C | ∃r.C | 2iC | 3iC,

where A ranges over concept names, r ranges over role names, and i = 1, . . . , n.
The intended semantics of MLALCn is defined as follows. An MLALCn -interpretation

with constant domains and roles is a pair M = 〈F, I〉 in which F = 〈W,R1, . . . , Rn〉 is an
n-frame and I is a function associating with each w ∈W a usual ALC-interpretation

I(w) =
〈
∆, . . . , AM,w, . . . , r, . . .

〉
(that is, ∆ is a nonempty set, AM,w ⊆ ∆ for each concept name A, and r ⊆ ∆ ×∆ for
each role name r). The (world-dependent) interpretation of concept names is inductively
extended to arbitrary concept descriptions. Here we give the definition for the new
‘modal’ constructors only:

(2iC)M,w =
⋂
wRiv

CM,v, (3iC)M,w =
⋃
wRiv

CM,v.

Now given a Kripke complete n-modal logic L, we say that a concept description C is
LALC-satisfiable (with an empty knowledge base) if there is an MLALCn -interpretation
(with constant domains and roles) M = 〈F, I〉 and a world w in F such that F is a frame
for L and CM,w 6= ∅.

Now, by extending the correspondence between ALC (with m role names) and the
modal logic Km (see Chapter 13 of this handbook), it is straightforward to see that
LALC-satisfiability coincides with L×Km-satisfiability.

3.3 Axiomatising products

Product logics are defined in a semantical way: they are logics determined by classes of
product frames, and so Kripke complete by definition. Therefore, the proper ‘transfer’
question to ask is how a possible axiomatisation for a product logic relates to axiomati-
sations of its components.

To begin with, observe that the following properties hold in every product frame of
the form 〈W,R1, . . . , Rn〉, for all i, j = 1, . . . , n, i 6= j:

• left commutativity : ∀x, y, z ∈W
(
xRjy ∧ yRiz → ∃u ∈W (xRiu ∧ uRjz)

)
,
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• right commutativity : ∀x, y, z ∈W
(
xRiy ∧ yRjz → ∃u ∈W (xRju ∧ uRiz)

)
,

• Church–Rosser property : ∀x, y, z ∈W
(
xRjy ∧ xRiz → ∃u ∈W (yRiu ∧ zRju)

)
,

see Fig. 2.

t d t t t t
t t d t t d-

- -

6 6 6

-

- -

6 6 6

x x xu y z

y u yz z uRi Ri Ri

Ri Ri Ri

Rj Rj RjRj Rj Rj

Figure 2. Left and right commutativity and Church–Rosser properties.

These properties can also be expressed by modal formulas. One can easily check that
an arbirtary (not necessarily product) n-frame is left commutative iff it validates the
formulas

coml
ij = 3j3ip→ 3i3jp,

it is right commutative iff it validates

comr
ij = 3i3jp→ 3j3ip,

and it is Church–Rosser iff it validates

chrij = 3i2jp→ 2j3ip.

The corresponding left and right commutativity axioms can be combined into a single
commutativity axiom

comij = coml
ij ∧ comr

ij .

DEFINITION 18. Given modal logics Li formulated in the language having 2i (i =
1, . . . , n), the commutator

[L1, . . . , Ln]

of L1, . . . , Ln is the smallest n-modal logic containing all the Li and the axioms comij

and chrij , for all i, j = 1, . . . , n, i 6= j.

Note that the commutator of (finitely) axiomatisable modal logics is always (finitely)
axiomatisable by definition. Moreover, since the axioms comij and chrij are Sahlqvist
formulas, we also have:

PROPOSITION 19. The commutator of canonical logics is canonical, and so Kripke
complete.

It is worth noting that even if all components are Kripke complete, their commutator
is not necessarily so: non-examples are [K4,GL.3] and [GL,Grz.3], see Section 3.4.

Commutators are natural candidates for axiomatising products. As comij and chrij
are valid in every product frame, by Proposition 14 we always have that

[L1, . . . , Ln] ⊆ L1 × · · · × Ln, (2)

whenever L1, . . . , Ln are Kripke complete modal logics. Those tuples of logics L1, . . . , Ln
for which the converse inclusion also holds are called product-matching.



18 Agi Kurucz

Axiomatising two-dimensional product logics

We begin with a general result of Gabbay and Shehtman [24] stating that certain pairs
of modal logics are always product-matching.

Consider the first-order language with equality and a binary predicate R. A formula
ψ in this language is called positive if it is built up from atoms using only ∧ and ∨. A
sentence of the form

∀x∀y∀z̄
(
ψ(x, y, z̄)→ R(x, y)

)
is said to be a universal Horn sentence if ψ(x, y, z̄) is a positive formula. We call an
ML-formula ϕ a Horn formula, if there is a universal Horn sentence ϕH such that, for
all frames F,

F |= ϕ iff F |= ϕH .

An ML-formula is called variable free if it contains no propositional variables, i.e., all
its atomic subformulas are constants ⊥ or >.

DEFINITION 20. A modal logic is called Horn axiomatisable if it is axiomatisable by
only Horn and variable-free formulas.

It is not hard to see that if L is a Kripke complete and Horn axiomatisable logic then
FrL is defined by the set

ΓL = {ϕH | ϕ is a Horn axiom of L} ∪ {ϕ? | ϕ is a variable-free axiom of L} (3)

of first-order formulas (here ϕ? is the standard translation of ϕ). Examples of Kripke
complete Horn axiomatisable logics are K, D, K4, S4, KD45, T, S5.

THEOREM 21. Let L1 and L2 be Kripke complete and Horn axiomatisable modal logics.
Then

L1 × L2 = [L1, L2].

Proof. The heart of the proof is the following lemma that can be proved by constructing
the necessary p-morphism in a step-by-step manner, see [23, Lemmas 5.2 and 5.8].

LEMMA 22. Let L1 and L2 be Kripke complete and Horn axiomatisable unimodal logics.
Then every countable rooted 2-frame for [L1, L2] is a p-morphic image of a product frame
for L1 × L2.

Now, by Proposition 19, [L1, L2] is determined by the class of commutative and
Church–Rosser frames from Fr(L1 ⊗ L2). By (3), this class is first-order definable in
the language with equality and two binary predicate symbols. Let ϕ /∈ [L1, L2]. Then,
using the standard translation ϕ? of ϕ and the downward Löwenheim–Skolem–Tarski
theorem, it is not hard to see that we can have a countable rooted 2-frame F for [L1, L2]
refuting ϕ. Now, using Lemma 22, we can find a product frame G for L1 × L2 having F
as its p-morphic image. By Proposition 9, it follows that G 6|= ϕ, and so ϕ /∈ L1 × L2.
Therefore, L1×L2 ⊆ [L1, L2]. The converse inclusion has already been shown as (2). �

As a corollary of Theorem 21 we obtain that finite axiomatisability of two Kripke com-
plete and Horn axiomatisable logics transfers to their product. An interesting corollary
of Lemma 22 is the following:
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COROLLARY 23. Let L1, L2 and L3 be Kripke complete and Horn axiomatisable uni-
modal logics. Then

L1 × L2 × L3 = (L1 × L2)× L3 = L1 × (L2 × L3).

Unfortunately, no other general result is known about axiomatisations of two-dimen-
sional products. In Section 3.4 we shall see several examples of pairs of finitely axioma-
tisable modal logics whose products are not even recursively enumerable. Such are, for
instance, Log{〈N, <〉} × Log{〈N, <〉}, K4×GL.3 and S4×Grz.3.

Moreover, Theorem 21 cannot be generalised even to logics whose classes of frames are
definable by universal first-order formulas. As the following theorem shows, for many
transitive logics L, the pairs of ‘K4.3 and L’ and ‘Grz.3 and L’ are not product-matching:

THEOREM 24. (i) [23] Let L be any Kripke complete logic containing K4 and having
the two-element reflexive chain as its frame. Then K4.3× L 6= [K4.3, L].

(ii) [24] Let L1 be any Kripke complete logic containing Grz and having the two-
element reflexive chain as its frame. Let L2 be any Kripke complete logic containing S4
and having either (a) the two-element reflexive chain or (b) the two-element cluster as
its frame. Then L1 × L2 6= [L1, L2].

There are many open questions in the area. For instance, it is not known whether such
‘standard’ products like K4.3×K or K4.3×S5 or K4.3×K4.3 are product-matching, or
even finitely axiomatisable (they are recursively enumerable by Theorem 17). In general,
no examples for pairs of logics are known that are not product-matching, but whose
product is finitely axiomatisable.

Axiomatising higher dimensional product logics

Tuples of more than two modal logics are almost never product-matching. To begin with,
it is straightforward to see that all n-dimensional product frames 〈W,R1, . . . , Rn〉 satisfy
the following ‘cubifying’ properties whenever n ≥ 3 and i, j, k = 1, . . . , n are distinct:

Φijk = ∀x, y, z, v ∈W
(
xRiv ∧ xRjy ∧ xRkz → ∃a, b, c, d ∈W

(vRjc ∧ vRkb ∧ yRic ∧ yRka ∧ zRib ∧ zRja ∧ aRid ∧ bRjd ∧ cRkd)
)
.

∀ r
r
r
r

-

6






�

Ri

Rj
Rk

x v

z
y

∃ r
r
r
r

-

6






�

b b
bb

-

-

-
6

6 6





�





�





�

x v

z

y

a

b

c

d

It is not hard to see that, say, a 3-frame F for [K,K,K] satisfies property Φ123 iff the
following modal formula cub123 is valid in F (cf. [39, 3.2.67] and [52]):

cub123 = [31(22p12 ∧23p13) ∧ 32(21p21 ∧23p23) ∧ 33(21p31 ∧22p32)
∧ 2122(p12 ∧ p21 → 23q3) ∧ 2123(p13 ∧ p31 → 22q2)
∧ 2223(p23 ∧ p32 → 21q1)] −→ 313233(q1 ∧ q2 ∧ q3) .
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Thus cub123 belongs to K3. On the other hand, Fig. 3 shows a 23-element frame for
[K,K,K] (that is, a 3-frame satisfying comij and chrij for i, j = 1, 2, 3, i 6= j) that
refutes cub123 (see again [39, 3.2.67]). So [K,K,K] and K3 are different.
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Figure 3. A frame for [K,K,K] that refutes cub123.

Moreover, in many cases the addition of cubifying properties does not help either. As
is shown by Johnson [44] in the algebraic setting of diagonal-free cylindric algebras, S5n

is not finitely axiomatisable whenever n ≥ 3. Generalisations of the cubifying properties
are used in [52] to show that Kn is not finitely axiomatisable either for n ≥ 3. Moreover,
the following general result of [42] shows how hopeless the situation really is:

THEOREM 25. Let n ≥ 3 and let L be any n-modal logic such that Kn ⊆ L ⊆ S5n.
Then L is not finitely axiomatisable. Moreover, it is undecidable whether a finite n-frame
is a frame for L.

On the other hand, if frames for the component logics do not allow branching (like in
the functional frames for Alt), then counterexamples like the above one do not work, and
in fact the cubifying properties follow from the Church–Rosser properties. The following
result of [24] says that any tuple of Alt logics is product-matching. It can be proven in
a way similar to the proof of Theorem 21 above.

THEOREM 26. For any natural number n > 1, Altn =

n︷ ︸︸ ︷
[Alt, . . . ,Alt] .

There are several interesting open questions concerning the axiomatisation of higher
(≥ 3) dimensional product logics. For instance, it is not known whether logics like Kn

or S5n are axiomatisable using finitely many propositional variables, or whether S5n is
finitely axiomatisable over Kn. Though logics like Kn or S5n are known to be recursively
enumerable by Theorem 17, no intuitive ‘concrete’ axiomatisation is known for most of
them.
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3.4 Decision problems and complexity of products

There are three basic approaches to establishing decidability of modal logics:

(1) Given such a logic L, one can try to prove that L has the finite model property
(fmp). Even without a recursive bound on the size of the models, this can yield
decidability if L is recursively enumerable, and the class of finite frames for L is
recursively enumerable as well (up to isomorphism, of course). This is the case for
instance if L is finitely axiomatisable.

(2) Even if a logic L does not enjoy the fmp, then one can try to show that it is charac-
terised by some class of perhaps infinite models having a certain ‘regular structure,’
say, constructed from repeating finite pieces, so called ‘blocks’ or ‘mosaics.’

(3) The third approach is to try to reduce the decision problem for L to another problem
that is already known to be decidable (say, to the decision problem for another
modal logic, or a suitable monadic second-order theory, or some problem about tree
automata).

All three approaches have been successfully applied to uni- and multimodal logics; see
e.g., [22, 12, 90]. As products of modal logics are special multimodal logics, in principle
the same approaches can be applied to them as well.

As concerns (1), there is an even more tempting way. One can try to show the finite
model property w.r.t. the ‘intended’ models, that is, those that are based on product
frames. (It is important to stress that in general there are frames for product logics
which are not product frames.)

DEFINITION 27. A modal logic L has the product fmp if L is characterised by the class
of its finite product frames.

Note that by Proposition 14, for every product frame F = F1 × · · · × Fn and product
logic L = L1 × · · · × Ln,

F |= L iff Fi |= Li, for all 1 ≤ i ≤ n.

Obviously, the product fmp implies the fmp. As we shall see below, the converse does
not necessarily hold.

We can enumerate the formulas that are not in a product logic L (and thereby obtain
a decision algorithm for L whenever L is recursively enumerable) if

• L has the product fmp, and

• finite product frames for L are recursively enumerable (up to isomorphism).

The latter property clearly holds if L is a product of finitely axiomatisable Kripke com-
plete logics such as K, K4, K4.3, S5, etc., so this approach looks very promising.
Unfortunately, it is easy to see that most products of well-known unimodal logics lack
the product fmp. Here is an example for a simple bimodal formula that ‘forces’ infinite
product frames even for logics like K4×K or K4× S5:

2+
1 32p ∧2+

1 22(p→ 312
+
1 ¬p) (4)

(here 2+
1 ψ abbreviates ψ ∧ 21ψ). However, as we shall see below, two-dimensional

product logics with at least one S5n- or Kn-component can have the (usual, ‘abstract’)
fmp.
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Products with ‘S5n- and Kn-like’ logics are usually decidable

Filtration.
Originating in the 1940s, the filtration method is one of the oldest and most well-known

techniques for finite model property proofs in modal logic. Here we discuss how it can
be used to show the fmp of two-dimensional product logics where one component is a
special kind of Horn axiomatisable logic and the other is S5n or Kn.

A QTC-logic is a modal logic axiomatised by a finite set of formulas where each axiom
is either variable-free or of the form

2ip→ 2
j
ip (j ≥ 0) or 3k2kp→ p.

The following theorem is due to Shehtman [76]:

THEOREM 28. Let L1 be a QTC-logic and L2 be either S5n or Kn. Then L1 ×L2 has
the fmp.

As it is easy to see that every QTC-logic is Horn axiomatisable, by Theorem 21 we
obtain:

THEOREM 29. Let L1 be a QTC-logic and L2 be either S5n or Kn. Then L1 × L2 is
decidable.

Proof. We illustrate the proof of Theorem 28 by showing that K4 ×K has the fmp.
Suppose ϕ /∈ K4 ×K for some ML2-formula ϕ. We will construct a model refuting ϕ
that is based on a finite frame for [K4,K]. As [K4,K] = K4×K by Theorem 21, this
would suffice.

As is well-known, every rooted Kripke frame is a p-morphic image of an intransitive
tree. Therefore, by Propositions 9 and 12, we may assume that there exists a model
M = 〈F,V〉 refuting ϕ and based on the product F =

〈
W, R̄1, R̄2

〉
of a transitive frame

and an intransitive tree of depth md(ϕ). Thus,
〈
W, R̄1

〉
is transitive,

〈
W, R̄2

〉
is the

disjoint union of intransitive trees of depthmd(ϕ), and R̄1 and R̄2 have the commutativity
and Church–Rosser properties. For each x ∈ W , let tree(x) =

〈
Wx, R̄2,x

〉
denote the

intransitive tree x belongs to.
We define an equivalence relation ∼ on W . For all x, y ∈W , let x ∼ y iff there exists

a relation E ⊆Wx ×Wy satisfying the following properties:

• xEy

• for every u ∈Wx there is v ∈Wy such that uEv,

• for every u ∈Wy there is v ∈Wx such that uEv,

• for all u ∈Wx, v, z ∈Wy,

– if uEv and vR̄2,yz then there is z′ ∈Wx such that uR̄2,xz
′ and z′Ez,

– if uEv and zR̄2,yv then there is z′ ∈Wx such that zR̄2,xu and z′Ez,

• for all u ∈Wy, v, z ∈Wx,

– if uEv and vR̄2,xz then there is z′ ∈Wy such that uR̄2,yz
′ and z′Ez,

– if uEv and zR̄2,xv then there is z′ ∈Wy such that zR̄2,yu and z′Ez,
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• for all u ∈ Wx, v ∈ Wy, and propositional variables p ∈ subϕ, u ∈ V(p) iff
v ∈ V(p).

(In other words, E should be a bisimulation between 〈Wx, R̄2,x, R̄
−1
2,x〉 and 〈Wy, R̄2,y, R̄

−1
2,y〉

w.r.t. subϕ that connects x and y.)
Now we define a new model M∼ = 〈F∼,V∼〉 based on F∼ =

〈
W∼, R̄∼1 , R̄

∼
2

〉
as follows:

• W∼ = {[x] | x ∈W}, where [x] denotes the ∼-equivalence class of x;

• for all x, y ∈W ,

[x]R̄∼2 [y] iff ∃x′∃y′ (x′ ∼ x, y′ ∼ y and x′R̄2y
′);

• R̄∼1 is the transitive closure of the relation R̄•1 defined by taking, for all x, y ∈W ,

[x]R̄•1[y] iff ∃x′∃y′ (x′ ∼ x, y′ ∼ y and x′R̄1y
′);

• V∼(p) = {[x] | x ∈ V(p)}, for all p ∈ subϕ, and V∼(q) = ∅, for all other proposi-
tional variables q.

We claim that

M∼ refutes ϕ, and (5)〈
W∼, R̄∼1 , R̄

∼
2

〉
is a finite frame for [K4,K]. (6)

Claim (5) follows from the fact that M∼ is a filtration of M in the sense that, for all
x, y ∈W , i = 1, 2, the following two conditions hold:

• if xR̄iy then [x]R̄∼i [y],

• if [x]R̄∼i [y] then (M, y) |= ψ whenever 2iψ ∈ subϕ and (M, x) |= 2iψ.

(R̄∼2 and R̄∼1 are known as the least filtration and the Lemmon (or least transitive)
filtration, respectively; see e.g., [12, 31].) By induction on the construction of ψ, the
reader can readily check that for every ψ ∈ subϕ and every x ∈W ,

(M, x) |= ψ iff (M∼, [x]) |= ψ,

which yields (5).
To prove (6), observe first that R̄∼1 is transitive by definition. Using the definition of

∼, it is straightforward to show that ∼ commutes with R̄2. Then this fact can be used
to show that R̄∼1 and R̄∼2 commute and have the Church–Rosser property.

Finally, we show that W∼ is finite. Observe first that since bisimilar paths are of equal
length, if x ∼ y then both the depth and the co-depth of x and y (in the trees tree(x)
and tree(y), respectively) are the same. Moreover, for all x, y, z, if [x]R̄∼2 [y], [x]R̄∼2 [z] and
y 6∼ z then the submodels generated by [y] and [z] in M∼ are not isomorphic (as far as
propositional variables occurring in ϕ are concerned). So we have

|W∼| ≤
md(ϕ)∑
k=0

nk(ϕ), (7)

where n0(ϕ) = 2|subϕ| and nk+1(ϕ) = 2|subϕ| · 2nk(ϕ). �
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Observe that the bound in (7) is non-elementary in the size of ϕ. In fact, it is not
known whether there exists an elementary decision algorithm for K×K or K4×K. Note
however that products of K with ‘richer’ dynamic and temporal logics, such as PDL×K
and PTL×K are known to be non-elementary; see [23]. The same applies to products
with S5n whenever n ≥ 2.

On the other hand, if one component-logic is not K but (unimodal) S5, then one can
do better. As is shown by Gabbay and Shehtman [24], in these cases the equivalence
relation ∼ on worlds becomes more easily ‘characterisable’. Namely, for each world x in
W , let

Σ(x) = {ψ ∈ subϕ | (M, x) |= ψ},

and for x, y ∈W , put

x ∼ y iff Σ(x) = Σ(y) and {Σ(z) | xR̄2z} = {Σ(z) | yR̄2z}.

As now each world [x] in M∼ is uniquely determined by the pair
〈
Σ(x), {Σ(z) | xR̄2z}

〉
of sets, we have the better, double-exponential bound

|W∼| ≤ 2|subϕ| · 22|sub ϕ|

on the size of the filtrated model. So the filtration method yields a coN2EXPTIME
decision algorithm for products of QTC-logics with S5.

Quasimodels.

If L is Kripke complete but not a QTC-logic then L ×Kn and L × S5n are out of
the scope of Theorem 28. Yet, many of these products can be shown to be decidable
by the quasimodel method. This method was first developed in the series of papers
[84, 85, 86, 88] on description logics with various modal and temporal operators, and
then extended to products in [83, 23] and to fragments of first-order modal and temporal
logics in [87, 43, 89].

The idea is to finitise the ‘Kn- (or S5n-)bit’ of the models first, then build some kind of
structure that manages to keep enough information about its ‘two-dimensional’ character
on the one hand, and can be used to prove decidability (even if it is not necessarily finite)
on the other.

We fix a Kripke complete modal logic L and anML2-formula ϕ, and define the notion
of an L×K-quasimodel for ϕ as follows. By a type for ϕ we mean any subset t of subϕ
which is Boolean-saturated (in the sense that, for instance,

• ψ ∧ χ ∈ t iff ψ ∈ t and χ ∈ t, for every ψ ∧ χ ∈ subϕ,

• ¬ψ ∈ t iff ψ /∈ t, for every ¬ψ ∈ subϕ,

and so on for the other Boolean connectives). A quasistate candidate for ϕ is a pair
〈〈T,<〉 , t〉, where 〈T,<〉 is a finite intransitive tree of depth ≤ md(ϕ) and t a labeling
function associating with each x ∈ T a type t(x) for ϕ. (So we can think of a quasistate
candidate as a tree of types.) Two quasistate candidates 〈〈T,<〉 , t〉 and 〈〈T ′, <′〉 , t′〉
are called isomorphic if there is an isomorphism f between the trees 〈T,<〉 and 〈T ′, <′〉
such that t(x) = t′(f(x)), for all x ∈ T . A quasistate candidate 〈〈T,<〉 , t〉 is called a
quasistate for ϕ if the following conditions hold:
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(qm1) (32-saturation) For all x ∈ T and 32ψ ∈ subϕ,

32ψ ∈ t(x) iff ∃y ∈ T
(
x < y ∧ ψ ∈ t(y)

)
.

(qm1′) (smallness) For all x, x1, x2 ∈ T such that x < x1, x < x2 and x1 6= x2, the
structures 〈〈T x1 , <x1〉 , tx1〉 and 〈〈T x2 , <x2〉 , tx2〉 are not isomorphic,

where 〈T xi , <xi〉 is the subtree of 〈T,<〉 generated by xi, and txi is the restriction of t
to T xi , i = 1, 2. Clearly,

b(ϕ) =
md(ϕ)∑
k=0

nk(ϕ) (8)

is an upper bound for the number of different quasistates for ϕ (cf. (7)). The number of
points in any quasistate for ϕ is bounded by

n0(ϕ) +
md(ϕ)∑
k=1

k∏
j=1

nmd(ϕ)−j(ϕ) ≤ b(ϕ)md(ϕ).

In what follows, we assume that nonisomorphic quasistates are disjoint and that isomor-
phic quasistates actually coincide.

A basic structure of depth m for ϕ is a pair 〈F, q〉 such that F = 〈W,R〉 is a frame for
L and q a function associating with each w ∈W a quasistate q(w) = 〈〈Tw, <w〉 , tw〉 for
ϕ such that the depth of each 〈Tw, <w〉 is m.

Let 〈F, q〉 be a basic structure for ϕ of depth m and let k ≤ m. A k-run through 〈F, q〉
is a function r giving for each w ∈ W a point r(w) ∈ Tw of depth k. (That is, a run
‘goes along’ the frame F and chooses a (location of a) type of the same depth from each
type-tree 〈Tw, <w〉.) Given a set R of runs, we denote by Rk the set of all k-runs from
R. Clearly, if R0 is not empty, then it is a singleton set, with its only member r0 being
the run through the roots of the quasistates.

A run r is called coherent if

∀w ∈W ∀31ψ ∈ subϕ
(
∃v ∈W

(
wRv ∧ ψ ∈ tv(r(v))

)
→ 31ψ ∈ tw(r(w))

)
,

and saturated if

∀w ∈W ∀31ψ ∈ subϕ
(
31ψ ∈ tw(r(w)) → ∃v ∈W

(
wRv ∧ ψ ∈ tv(r(v))

))
.

Finally, we say that a quadruple Q = 〈F, q,R, /〉 is an L×K-quasimodel for ϕ (based
on F) if F is a frame for L, 〈F, q〉 is a basic structure for ϕ of depth m ≤ md(ϕ) such
that

(qm2) ∃w0 ∈W ϕ ∈ tw0(x0), where x0 is the root of 〈Tw0 , <w0〉,

R is a set of coherent and saturated runs through 〈F, q〉, and / is a binary relation on R
satisfying the following conditions:

(qm3) for all r, r′ ∈ R, if r / r′ then r(w) <w r′(w) for all w ∈W ;

(qm4) R0 6= ∅, and for all k < m, r ∈ Rk, w ∈ W and x ∈ Tw, if r(w) <w x then
there is r′ ∈ Rk+1 such that r′(w) = x and r / r′.
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Now, having the notion of a quasimodel been defined, what we need is the ‘quasimodel
truth-lemma:’

LEMMA 30. Given a Kripke complete modal logic L, an ML2-formula ϕ is satisfiable
in a product frame F×G for L×K iff there is an L×K-quasimodel for ϕ based on F.

Proof. (⇐) Suppose 〈F, q,R, /〉 is an L×K-quasimodel for ϕ. Take the product frame
F× 〈R, /〉 and define a valuation V in it as follows:

V(p) = {〈w, r〉 | p ∈ tw(r(w))}

for every propositional variable p. Let M = 〈F× 〈R, /〉 ,V〉. One can show by an easy
induction on the construction of ψ ∈ subϕ that for every 〈w, r〉 in M we have

(M, 〈w, r〉) |= ψ iff ψ ∈ tw(r(w)).

In view of (qm2) and R0 6= ∅ (which we have by (qm4)), it follows that ϕ is satisfied
in M.

(⇒) Suppose that ϕ is satisfied in a model M based on the product F×G of frames F =
〈W,R〉 and G = 〈∆, <〉. By Proposition 9 (i), we may assume that G is an intransitive
tree of depth m ≤ md(ϕ) and (M, 〈w0, x0〉) |= ϕ for some w0 ∈ W , with x0 being the
root of G. With every pair 〈w, x〉 ∈W ×∆ we associate the type

t(w, x) = {ψ ∈ subϕ | (M, 〈w, x〉) |= ψ}.

Now we have to construct a quasistate 〈〈Tw, <w〉 , tw〉 for each w ∈ W . The obvious
choice of Tw = ∆, <w=< and tw(x) = t(w, x) does not work, because ∆ can be infinite.
So let us make it finite in such a way that the resulting structure still satisfies (qm1) and
also complies with the smallness condition (qm1′). Fix a w ∈ W and define a binary
relation ∼w on ∆ as follows. If x, y ∈ ∆ are of co-depth 0 (i.e., they are leaves of G) then

x ∼w y iff t(w, x) = t(w, y).

For x, y ∈ ∆ of co-depth k (0 < k ≤ md(ϕ)), let

x ∼w y iff t(w, x) = t(w, y) and ∀z ∈ ∆
(
x < z → ∃z′ ∈ ∆ (y < z′ ∧ z ∼w z′)

)
and ∀z ∈ ∆

(
y < z → ∃z′ ∈ ∆ (x < z′ ∧ z ∼w z′)

)
.

Clearly ∼w is an equivalence relation on ∆. Denote by [x]w the ∼w-equivalence class of
x and put

∆w = {[x]w | x ∈ ∆},
[x]wRw[y]w iff ∃y′ ∈ [y]w x < y′,

lw([x]w) = t(w, x).

The structure 〈〈∆w, Rw〉 , lw〉 is almost a quasistate, just 〈∆w, Rw〉 is not necessarily a
tree. The tree 〈Tw, <w〉 we need can be obtained by unraveling 〈∆w, Rw〉:

Tw = {〈[x0]w, . . . , [xk]w〉 | k ≤ m, [x0]wRw[x1]wRw . . . Rw[xk]w},
u <w v iff u = 〈[x0]w, . . . , [xk]w〉 , v = 〈[x0]w, . . . , [xk]w, [xk+1]w〉

and [xk]wRw[xk+1]w.
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Finally, let tw(〈[x0]w, . . . , [xk]w〉) = lw([xk]w) = t(w, xk). It is not hard to see that,
for any w ∈ W , 〈〈Tw, <w〉 , tw〉 is a quasistate for ϕ. Moreover, by taking q(w) =
〈〈Tw, <w〉 , tw〉 for each w ∈W , we obtain a basic structure 〈F, q〉 for ϕ satisfying (qm2).

It remains to define appropriate runs through 〈F, q〉. To this end, for each k ≤ m and
each sequence 〈x0, . . . , xk〉 of points in ∆ such that x0 < · · · < xk, take the map

r : w 7→ 〈[x0]w, . . . , [xk]w〉 ,

and let R be the set of all such maps. For r, r′ ∈ R, let r / r′ iff r(w) <w r′(w) for all
w ∈W . It is straightforward to check that 〈F, q,R, /〉 is an L×K-quasimodel for ϕ. �

Note that L× S5-quasimodels are considerably simpler than L×K-quasimodels: in-
stead of trees of types it is enough to consider sets of types only as quasistates. Similarly
to the filtration case, this results in better upper bounds on the size of the constructed
structures. On the other hand, L×Kn- and L×S5n-quasimodels (for n ≥ 2) are similar
to the above complex ones, and one even has to take into account the several different
accessibility relations when defining quasistates.

Although quasistates in quasimodels are always finite, quasimodels themselves are
usually infinite (since the frame F can be infinite). Depending on the component logics
in question, there can be several ways of using them to prove decidability of products:

• In the simplest cases one can manage to find a finite quasimodel for ϕ and then to
construct a finite product model out of it, thereby showing that the logic has the
product fmp. This can be done in the case of K×K. Moreover, for S5× S5 and
K × S5 the resulting product model is of exponential size (see Chapter 3 of this
handbook), so these logics are decidable in coNEXPTIME.

• In some cases, it can be shown that there is a quasimodel for ϕ iff there exists
a finite set S of finite ‘partial’ quasimodels (called blocks or mosaics) satisfying
some effectively checkable conditions and that the cardinality of S as well as the
size of each block in it do not exceed a number effectively computable from ϕ. The
‘effectively checkable conditions’ are supposed to guarantee that blocks can be used
as ‘small mosaic pieces’ to construct the quasimodel we need.

• In some cases, the statement that a quasimodel exists can be translated into
monadic second-order logic or reduced to other known decidable problems.

Here we illustrate the second and the third techniques by showing—in two different
ways—that K4.3×K is decidable. Note that the formula (4) shows that this logic lacks
the product fmp, and it is not known whether it has the fmp.

Quasimodels and mosaics.
Throughout, we fix an ML2-formula ϕ. A block for ϕ is a quadruple

Buv = 〈Fuv, quv,Ruv, /uv〉

such that

• Fuv = 〈{u, v}, <〉 is a 2-element strict linear order with u < v,

• 〈Fuv, quv〉 is a basic structure for ϕ of depth m, for some m ≤ md(ϕ),
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• Ruv is a set of runs through 〈Fuv, quv〉 such that, for all r ∈ Ruv and 31ψ ∈ subϕ,

if ψ ∈ tv(r(v)) or 31ψ ∈ tv(r(v)) then 31ψ ∈ tu(r(u)),

• /uv is a binary relation on Ruv satisfying (qm3) and (qm4).

We remind the reader that quasistates occurring in such a block are denoted by

quv(u) = 〈〈Tu, <u〉 , tu〉 and q(v)uv = 〈〈Tv, <v〉 , tv〉 .

Observe that a block is almost a K4.3 × K-quasimodel. The only thing missing is
that its runs are (though coherent) not necessarily saturated. That is why we need an
appropriate collection of blocks: By sticking them properly together, we can ‘fix the
defects’ and converge to a real quasimodel.

To this end, we call a set S of blocks for ϕ satisfying if the following properties hold:

(ssb1) all blocks in S are of the same depth m, for some m ≤ md(ϕ);

(ssb2) S contains a block satisfying (qm2);

(ssb3) for every Buv in S, if 31ψ ∈ tv(r(v)) for some run r ∈ Ruv then there exist a
block Bvw in S and a sequence 〈xs ∈ Tw | s ∈ Ruv〉 of points in Tw such that

• quv(v) = qvw(v),

• for every s ∈ Ruv, the function p defined by p(v) = s(v), p(w) = xs is a
run in Rvw,

• for all s, s′ ∈ Ruv, if s /uv s′ then xs <w xs′ ,

• ψ ∈ tw(xr);

(ssb4) for every block Buv in S, if 31ψ ∈ tu(r(u)), ψ /∈ tv(r(v)) and 31ψ /∈ tv(r(v))
for some run r ∈ Ruv then there are blocks Buw and Bwv in S and a sequence
〈xs ∈ Tw | s ∈ Ruv〉 of points in Tw such that

• quv(u) = quw(u), quw(w) = qwv(w), qwv(v) = quv(v),

• for every s ∈ Ruv, the function p′ defined by p′(u) = s(u), p′(w) = xs is
a run in Ruw, and the function p′′ defined by p′′(w) = xs, p′′(v) = s(v)
is a run in Rwv,

• for all s, s′ ∈ Ruv, if s /uv s′ then xs <w xs′ ,

• ψ ∈ tw(xr).

On the one hand, it is straightforward to see that one can effectively check whether
there exists a satisfying set of blocks for ϕ. On the other hand, it is well-known that
every rooted frame for K4.3 is a p-morphic image of a sufficiently large strict linear
order, so by Propositions 9 and 12, K4.3 ×K is determined by product frames whose
first component is a strict linear order. As satisfiability in a single element strict linear
order is trivially decidable, to establish the decidability of K4.3 × K, it is enough to
prove the following ‘block lemma:’
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LEMMA 31. There is a K4.3×K-quasimodel for ϕ based on a strict linear order with
≥ 2 elements iff there is a satisfying set of blocks for ϕ.

Proof. The construction of a satisfying set from a quasimodel is easy. Suppose that
Q = 〈F, q,R, /〉 is a quasimodel for ϕ, with F = 〈W,R〉 being a strict linear order with
≥ 2 elements. For all u, v ∈ W such that uRv, define the restriction Quv of Q to the
2-element strict linear order on {u, v} in the natural way. It is straightforward to check
that these Quv are blocks and that the collection S of them is a satisfying set.

Now we show how a quasimodel for ϕ can be constructed from a satisfying set S of
blocks for ϕ. Starting from a block satisfying (qm2), we will build a series of larger and
larger quasimodel-like structures having not necessarily saturated runs. The ‘defects’
of these runs are ‘corrected’ one by one in such a way that the sequence of structures
‘converges’ to a quasimodel.

To begin with, we call a quadruple Q = 〈F, q,R, /〉 a weak quasimodel for ϕ if the
following conditions hold:

(wq1) F = 〈W,R〉 is a finite strict linear order, W = {w0, w1, . . . , wm} for some m > 0,
w0Rw1R . . . Rwm, and 〈F, q〉 is a basic structure for ϕ satisfying (qm2);

(wq2) R is a set of runs through 〈F, q〉 such that for all i < j ≤ m, r ∈ R and
31ψ ∈ subϕ,

if ψ ∈ twj
(r(wj)) or 31ψ ∈ twj

(r(wj)) then 31ψ ∈ twi
(r(wi)),

(wq2′) / is a binary relation on R satisfying (qm4) and such that, for all r, s ∈ R,

r / s iff r(wi) <wi s(wi) for all i ≤ m,

(wq3) for every i < m, the restriction of Q to the two-element strict linear order on
{wi, wi+1} is a block in S.

(Note that property (wq2′) is a bit stronger than (qm3).) Now take a triple 〈i, r,31ψ〉
such that i ≤ m, r ∈ R and 31ψ ∈ subϕ. Such a triple is called a defect in Q if 31ψ ∈
twi

(r(wi)) and for all j such that i < j ≤ m, ψ /∈ twj
(r(wj)) and 31ψ /∈ twj

(r(wj)). If
i = m then such a defect is called an end-defect , otherwise it is a middle-defect .

We construct a sequence 〈Qn | n < ω〉 of weak quasimodels which ‘converges’ to a
real quasimodel for ϕ. Take a block Q0 = 〈F0, q0,R0, /0〉 in S satisfying (qm2).
Clearly, it is a weak quasimodel for ϕ as well. Suppose now that we have already
constructed Qn = 〈Fn, qn,Rn, /n〉 such that Fn = 〈Wn, Rn〉, Wn = {w0, w1, . . . , wm}
and w0Rnw1Rn . . . Rnwm. If the set Dn of all defects in Qn is empty then we are done:
Qn is obviously a quasimodel for ϕ. Otherwise, we take some d = 〈i, r,31ψ〉 from Dn.

Case 1: d is a middle-defect, that is, i < m. By (wq3), the restriction Qwiwi+1 of Qn

to the two-element strict linear order on {wi, wi+1} is a block in S. Choose two blocks
Bwiw and Bwwi+1 according to (ssb4) (with u = wi and v = wi+1). We may assume
that w /∈Wn. Define a basic structure

〈
Fdn, q

d
n

〉
by taking

W d
n = Wn ∪ {w},

Rdn = Rn ∪ {〈wj , w〉 | j ≤ i, wj ∈Wn} ∪ {〈w,wj〉 | i < j ≤ m, wj ∈Wn},
Fdn =

〈
W d
n , R

d
n

〉
,

qdn(v) =
{
qwiw(v) = qwwi+1(v), if v = w,
qn(v), if v ∈Wn.
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For all runs s, p ∈ Rn, s′ ∈ Rwiw, s′′ ∈ Rwwi+1 , such that s(wi) = s′(wi), s′(w) = s′′(w),
s′′(wi+1) = p(wi+1), define the function s ∪ s′ ∪ s′′ ∪ p on W d

n by taking, for all v ∈W d
n ,

(s ∪ s′ ∪ s′′ ∪ p)(v) =

 s(v), if v = wj , j ≤ i,
s′(v) = s′′(v), if v = w,
p(v), if v = wj , i < j ≤ m.

Let Rd
n be the set of all such functions. Elements in Rd

n of the form s ∪ s′ ∪ s′′ ∪ s, for
some s ∈ Rn, are called extensions of s. We call an extension s ∪ s′ ∪ s′′ ∪ s good , if
s′(w) = s′′(w) = xs; cf. (ssb4). Observe that every s ∈ Rn has a unique good extension
in Rd

n.
For all s, s′ ∈ Rd

n, define

s /dn s
′ iff s(v) <v s′(v) for all v ∈W d

n .

In other words, we ‘glue together’ the blocks Bwiw and Bwwi+1 at w, and then ‘insert’
the resulting piece into Qn between wi and wi+1. It can be readily checked that Qd

n =〈
Fdn, q

d
n,R

d
n, /

d
n

〉
is a weak quasimodel. Moreover, the defect d in Qd

n is ‘cured’ in the
sense that (by (ssb4)) the good extension r+ of r is such that ψ ∈ tw(r+(w)).

Case 2: d is an end-defect. This case is analogous to Case 1, but we have to use (ssb3)
instead of (ssb4) for ‘gluing together’ Qn and a block Bwmw at wm.

Next we turn the remaining defects in Qn to a subset Dd
n of the set of defects in Qd

n

as follows. Suppose 〈j, s,31χ〉 is a defect in Dn different from d. Let s+ be the good
extension of s and let k = j if j ≤ i and k = j + 1 otherwise. If 〈k, s+,31χ〉 is a defect
in Qd

n then we put it into Dd
n. Clearly, |Dd

n| ≤ |Dn| − 1. If Dd
n 6= ∅ then we take a defect

d′ ∈ Dd
n, construct Qdd′

n , and so on. When all the finitely many defects in Dn are cured,
we obtain a weak quasimodel Qn+1. Note that every run rn ∈ Rn has a unique extension
rn+1 ∈ Rn+1 obtained by taking at every step the good extension of the previous run.
We call this rn+1 the good extension of rn in Qn+1.

The limit quasimodel is defined by taking F = 〈W,R〉, where W =
⋃
n<ωWn, R =⋃

n<ω Rn and q =
⋃
n<ω qn. Then clearly F is a strict linear order and 〈F, q〉 is a basic

structure for ϕ.
For every i < ω and every sequence of runs 〈rn ∈ Rn | n ≥ i〉 such that rn+1 is the

good extension of rn in Qn+1 for all n ≥ i, take r =
⋃
{rn | n ≥ i}. Let R be the set of

such runs. For r =
⋃
{rn | n ≥ i} and r′ =

⋃
{r′n | n ≥ j} in R, define

r / r′ iff rn /n r
′
n, for all n ≥ max(i, j).

We show that R and / satisfy (qm3) and (qm4). Indeed, suppose that r and r′ are of
the above form and r / r′. Take a w ∈W . There is an n ≥ max(i, j) such that w ∈Wn.
Then r(w) = rn(w), r′(w) = r′n(w) and rn/n r′n, which implies r(w) <w r′(w) by (wq2′).
For (qm4), suppose that r =

⋃
{rn | n ≥ i} and r(w) <w x for some x ∈ Tw. Then

there is an n ≥ i such that w ∈ Wn, and so r(w) = rn(w). Since Qn satisfies (qm4),
there is an sn ∈ Rn such that sn(w) = x and rn /n sn. Let s =

⋃
{sm | m ≥ n}, where

sm+1 is the good extension of sm in Qm+1 for all m ≥ n. Then s(w) = sn(w) = x, and
it is not hard to see that, by (ssb3), (ssb4) and (wq2′), rm /m sm hold for all m ≥ n,
from which r / s.

Finally, we show that all the runs in R are coherent and saturated. Indeed, suppose
that r =

⋃
{rn | n ≥ i} and 31ψ ∈ tw(r(w)) for some w ∈W . Then there is an n ≥ i such
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that w ∈Wn, and so r(w) = rn(w). If 〈w, rn,31ψ〉 is not a defect in Qn then there is a
v ∈ Wn such that wRv, rn(v) = r(v) and ψ ∈ tv(rn(v)). And if 〈w, rn,31ψ〉 is a defect
in Qn then it is cured in its good extension rn+1 in Qn+1: there is v ∈ Wn+1 such that
wRv, rn+1(v) = r(v) and ψ ∈ tv(rn+1(v)). Conversely, assume that ψ ∈ tw(r(w)) and
let vRw. Then there is an n ≥ i such that v, w ∈Wn. Thus r(w) = rn(w), r(v) = rn(v)
and vRnw, and so 31ψ ∈ tv(r(v)) follows by (wq2).

Therefore, Q = 〈F, q,R, /〉 is a K4.3×K-quasimodel for ϕ, as required. �

Observe that the decision procedure given above is again non-elementary. In fact,
no elementary decision procedure is known for K4.3 × K. However, as quasistates in
K4.3× S5-quasimodels are of double-exponential size, one can obtain a 2EXPTIME
decision algorithm for K4.3×S5 as follows. Take the set of all blocks for ϕ (a straightfor-
ward computation shows that the cardinality of this set is also at most double-exponential
in the size of ϕ). Eliminate iteratively those blocks for which there are no ‘noneliminated’
blocks satisfying (ssb3) and (ssb4). This elimination procedure stops after at most
double-exponentially many steps. Now it is not hard to show that ϕ is satisfiable iff the
set S of remaining blocks contains a block satisfying (qm2).

Quasimodels and reductions to monadic second-order theories.
Here we give a second proof for the decidability of K4.3×K by showing that one can

translate the statement “there exists a K4.3×K-quasimodel for ϕ based on some strict
linear order F” into monadic second-order logic.

Fix some ML2-formula ϕ. For every m ≤ md(ϕ), below we will define a monadic
second order formula qmm

ϕ (in the language having a binary predicate constant <) in
such a way that the following holds:

LEMMA 32. For any strict linear order F, F |= qmm
ϕ for some m ≤ md(ϕ) iff there

exists a K4.3×K-quasimodel for ϕ based on F.

Though the monadic second-order theory of all strict linear orders is undecidable, we
can still use this lemma to deduce decidability of K4.3 ×K as follows. It is not hard
to see, using Theorem 16, that it is enough to consider quasimodels that are based on
countable strict linear orders. Now for every monadic second-order formula ψ and a
monadic predicate variable P not occurring in ψ, define the relativisation ψP of ψ to
P inductively by taking ψP = ψ for atomic ψ, (¬ψ)P = ¬ψP , (ψ1 ∧ ψ2)P = ψP1 ∧ ψP2 ,
(∀xψ)P = ∀x(P (x) → ψP ), and (∀Qψ)P = ∀QψP . Obviously, for any sentence ψ and
any strict linear order F, we have F |= ∃P (∃xP (x)∧ψP ) iff F′ |= ψ for some (nonempty)
suborder F′ of F—the intended interpretation of P is the domain of F′. As is well-known,
any countable strict linear order is a suborder of 〈Q, <〉. Let λ be the first-order sentence
defining the class of all strict linear orders. Then qmm

ϕ (assumed not to involve P ) is
satisfiable in some countable strict linear order F iff the monadic second-order formula

∃P
(
∃xP (x) ∧ (λ ∧ qmm

ϕ )P
)

holds in 〈Q, <〉. As the monadic second-order theory of 〈Q, <〉 is known to be decidable
(see [67]), this proves the decidability of K4.3×K.

In order to define the necessary monadic second order formulas qmm
ϕ for each m ≤

md(ϕ), we require a number of auxiliary formulas. Denote by Σm the set of all quasistates
for ϕ of depth m. Given a quasistate q = 〈〈Tq, <q〉 , tq〉 from Σm and a point a in Tq,
we denote the depth of a by dq(a).
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Introduce a unary predicate variable Pq for each q ∈ Σm and a unary predicate variable
Rkψ for each ψ ∈ subϕ and each k ≤ m. Given a type t for ϕ and k ≤ m, let

χt(Rk(x)) =
∧
ψ∈t

Rkψ(x) ∧
∧
ψ/∈t

ψ∈subϕ

¬Rkψ(x),

saying that the type t at point x of depth k is defined with the help of

Rk(x) =
〈
Rkψ(x) | ψ ∈ subϕ

〉
.

For each k ≤ m, let

run0(P ,Rk) = ∀x
∧

q∈Σm

(
Pq(x)→

∨
a∈Tq

dq(a)=k

χtq(a)(Rk(x))
)
∧ ∀x

∧
31ψ∈subϕ

[
Rk31ψ(x)↔ ∃y

(
x < y ∧Rkψ2

(y)
)]
.

This is intended to say that Rk defines a coherent and saturated k-run through a sequence
of quasistates defined with the help of P = 〈Pq | q ∈ Σm〉.

However, we have to refine this definition in order to ensure that condition (qm4)
holds. To this end, we define, by ‘backwards’ induction on k, another formula run(P ,Rk)
as follows. If k = m (that is, we are at the ‘leaf-level’) then take run(P ,Rm) =
run0(P ,Rm).

Suppose, inductively, that for k ≤ m we have already defined run(P ,Rk). Then let
run(P ,Rk−1) be the following formula:

run0(P ,Rk−1)∧

∀x
∧

q∈Σm

∧
a∈Tq

dq(a)=k−1

[
Pq(x) ∧ χtq(a)(Rk−1(x))→

∧
b∈Tq

a<qb

∃
ψ∈subϕ

Rkψ

(
run(P ,Rk) ∧ χtq(b)(Rk(x))∧

∀z
∧

s∈Σm

∧
c∈Ts

ds(c)=k−1

(
Ps(z) ∧ χts(c)(Rk−1(z))→

∨
d∈Ts
c<sd

χts(d)(Rk(z))
))]

.

Finally, we define a monadic second-order sentence qmm
ϕ by taking

qmm
ϕ = ∃

q∈Σm

Pq

[
∀x

∨
q∈Σm

(
Pq(x) ∧

∧
q′∈Σm

q 6=q′

¬Pq′(x)
)
∧

∨
s∈Σm, a∈Ts

ds(a)=0
ϕ∈ts(a)

∃x
(
Ps(x) ∧ ∃

ψ∈subϕ
R0
ψ

(
run(P ,R0) ∧ χts(a)(R0(x))

))]
.

Evaluated in a strict linear order F = 〈W,<〉, the first line of qmm
ϕ says that the sets

Pq ⊆W (q ∈ Σm) form a partition of W . By defining the map q : W → Σm as

q(w) = q iff w ∈ Pq
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and a relation / on the runs by taking r/r′ iff r is defined by Rk−1 and r′ is defined by Rk
for some k ≤ m, we obtain a quasimodel Q = 〈F, q,R, /〉 for ϕ: the second line of qmm

ϕ

states condition (qm2); conditions (qm3) and (qm4) are satisfied by the definitions of
/ and the formulas run(P ,Rk), respectively.

Lower complexity bounds.

The following general result was obtained by Marx [59]. It is proved by reducing the
NEXPTIME-complete “n × n bounded tiling problem” to the satisfiability problem of
the logics in question, see Chapter 3 of this handbook:

THEOREM 33. Let L be a Kripke complete bimodal logic between K×K and S5× S5.
Then L is coNEXPTIME-hard.

For products of ‘linear’ logics with S5 (such as Log{〈N, <〉} × S5, Log{〈Q, <〉} × S5,
K4.3 × S5) one can obtain an EXPSPACE lower bound by reducing the “2n corridor
tiling problem” to their satisfiability problem, see [23, Theorem 6.64].

Products of ‘transitive’ modal logics are usually undecidable

None of the techniques for proving decidability discussed above work if we consider two-
dimensional products where both component logics are determined by transitive frames
of unbounded ‘cluster-depth’ (such as K4 ×K4). As we shall see below, these product
logics are in fact undecidable, and often lack the ‘abstract’ fmp.

Given a transitive frame F = 〈W,R〉, a point x ∈ W is said to be of cluster-depth
n < ω in F if there is a path x = x0Rx1R . . . Rxn of points from distinct clusters in F
(that is, xi+1Rxi does not hold for any i < n) and there is no such path of greater length.
If for every n < ω there is a path of n points from distinct clusters starting from x, then
we say that x is of infinite cluster-depth, or x is of cluster-depth ∞. The cluster-depth of
F is defined to be the supremum of the cluster-depths of its points (with n < ∞ for all
n < ω). For instance, F is of infinite cluster-depth if it contains points of arbitrary finite
cluster-depth. By the cluster-depth of a bimodal frame 〈W,R1, R2〉 with transitive R1,
R2 we understand the minimal cluster-depth of 〈W,R1〉 and 〈W,R2〉.

We remind the reader that a frame 〈W,R〉 is called Noetherian if there is no infinite
strictly ascending chain x0Rx1Rx2R . . . of points from W (i.e., no R-chain such that
xi 6= xi+1, for all i < ω).

THEOREM 34. (i) [28] Let L1 and L2 be Kripke complete unimodal logics containing
K4 and such that both L1 and L2 have among their frames a rooted Noetherian linear
order with an infinite descending chain of distinct points. Then all bimodal logics L in
the interval

[L1, L2] ⊆ L ⊆ L1 × L2

lack the fmp.
(ii) [26] If L is any Kripke complete bimodal logic containing K4 × K4 and having

product frames of arbitrarily large finite or infinite cluster-depth, then L is undecidable.

Note that as (by Theorem 21) K4×K4 = [K4,K4], it is a simple and natural example
for a finitely axiomatisable but undecidable modal logic.

Below we discuss the main points of the proof of Theorem 34. For more details, consult
[26].
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Lack of finite model property.

We will define a bimodal formula ‘forcing’ infinite [K4,K4]-frames. We want to ‘get
rid of’ the clusters first: take two fresh propositional variables h and v, and define new
modal operators by setting, for every bimodal formula ψ,

31ψ =
[
h→ 31

(
¬h ∧ (ψ ∨31ψ)

)]
∧
[
¬h→ 31

(
h ∧ (ψ ∨31ψ)

)]
,

32ψ =
[
v → 32

(
¬v ∧ (ψ ∨32ψ)

)]
∧
[
¬v → 32

(
v ∧ (ψ ∨32ψ)

)]
,

21 ψ = ¬31¬ψ, and 22 ψ = ¬32¬ψ.

(Similar operators were used by Spaan [77] and by Reynolds and Zakharyaschev [70].)
Now define ϕ∞ to be the conjunction of the following formulas:

2122

(
(h ∨32h→ 22h) ∧ (¬h ∨32¬h→ 22¬h)

)
, (9)

2122

(
(v ∨31v → 21v) ∧ (¬v ∨31¬v → 21¬v)

)
, (10)

32 31 (22⊥ ∧21⊥), (11)

21 22 (22⊥ ∧21⊥ → d), (12)

22 31 (¬d ∧21 d), (13)

21 32 (d ∧22 ¬d), (14)

21 22 (d→ 21 32 d), (15)

21 22 (¬d→ 22 31¬d). (16)

On the one hand, it is easy to see that ϕ is satisfiable in a product of two rooted
Noetherian linear orders each of which contains an infinite descending chain of distinct
points, see Fig. 4. Note that such a frame is infinite.

On the other hand, we show that ϕ∞ cannot be satisfied in a finite frame for [K4,K4].
The idea behind the proof is that, though the points ‘generated by’ ϕ∞ do not neces-
sarily form a nice ‘backward looking ω × ω-grid’ like on Fig. 4, yet each of them can be
‘characterised’ by a unique pair 〈n,m〉 of natural numbers.

To this end, suppose that ϕ∞ is satisfied at the root r of a model M based on a (not
necessarily product) frame F = 〈W,R1, R2〉 for [K4,K4]. Then both R1 and R2 are
transitive, they commute and satisfy the Church–Rosser property.

We define new (M-dependent) binary relations R̄1 and R̄2 on W by taking, for all
x, y ∈W ,

xR̄1y iff ∃z ∈W
[
xR1zaand

(
(M, x) |= h ⇐⇒ (M, z) |= ¬h

)
and (either z = y or zR1y)

]
,

xR̄2y iff ∃z ∈W
[
xR2z and

(
(M, x) |= v ⇐⇒ (M, z) |= ¬v

)
and (either z = y or zR2y)

]
.

In other words, xR̄1y iff xR1y and either x, y are of different ‘horizontal colours’ in the
sense that h is true in precisely one of them, or x, y are of the same h-colour (i.e., x |= h
iff y |= h), but there is a point z of different h-colour such that xR1zR1y. Clearly, we
always have R̄i ⊆ Ri (i = 1, 2). It is not hard to see that, by (9)–(10),

〈
W, R̄1, R̄2

〉
is a
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Figure 4. Satisfying ϕ∞ in an infinite product frame.

(not necessarily rooted) frame for [K4,K4], that is,

both R̄1 and R̄2 are transitive, (tran)
R̄1 and R̄2 commute, and (com)
R̄1 and R̄2 are Church–Rosser. (chro)

Moreover, for all x ∈W ,

(M, x) |= 31ψ iff ∃y ∈W (xR̄1y and (M, y) |= ψ),
(M, x) |= 32ψ iff ∃y ∈W (xR̄2y and (M, y) |= ψ).

We define inductively four infinite sequences

x0, x1, x2, . . . , y0, y1, y2, . . . , u0, u1, u2, . . . and v0, v1, v2, . . .

of points from W such that, for every i < ω,

(gen1) (M, xi) |= d ∧22 ¬d,

(gen2) (M, yi) |= ¬d ∧21 d,

(gen3) rR̄2ui, uiR̄1xi and uiR̄1yi,

(gen4) if i > 0 then rR̄1vi, viR̄2xi and viR̄2yi−1,

see Fig. 5. (We do not claim at this point that, say, all the xi are distinct.)
To begin with, by (11), there are u0, x0 such that rR̄2u0R̄1x0 and

(M, x0) |= 21⊥ ∧22⊥. (17)
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By (12), (M, x0) |= d. By (13), there is y0 such that u0R̄1y0 and (M, y0) |= ¬d ∧ 21 d.
So (gen1)–(gen3) hold for i = 0.

Now suppose that, for some n < ω, xi and yi with (gen1)–(gen4) have already
been defined for all i ≤ n. By (gen3) for i = n and by (com), there is vn+1 such
that rR̄1vn+1R̄2yn. So by (14), there is xn+1 such that (M, xn+1) |= d ∧ 22 ¬d and
vn+1R̄2xn+1. Now again by (com), there is un+1 such that rR̄2un+1R̄1xn+1. So, by
(13), there is yn+1 such that un+1R̄1yn+1 and (M, yn+1) |= ¬d ∧ 21 d, as required (see
Fig. 5).
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Figure 5. Generating the points xi, yi, ui and vi.

The following lemma is our basic tool in showing that all the xn are different:

LEMMA 35. For all i, n < ω,

(i) (M, xi) |= 3n
1 > ↔ 3n

2 >,

(ii) (M, yi) |= 3n+1
1 > ↔ 3n

2 >.

Proof. First, it is a straightforward consequence of (12), (16) and (com) that

21 22 (¬d→ 31>) (18)

holds in M. Further, it is not hard to show by induction on n that for all n < ω,

21 22 (d→ 2n
1 3n

2 d), (19)

21 22 (¬d→ 2n
2 3n

1 ¬d). (20)

are also true in M. Now to prove (i), suppose first that we have (M, xi) |= 3n
1 >. Then

there is a point z such that xiR̄n1 z. By (gen1), (M, xi) |= d. So, (M, z) |= 3n
2 d, by

(19). Using (com), we find a point v such that xiR̄n2 v and vR̄n1u, so (M, xi) |= 3n
2 >

follows. Conversely, suppose (M, xi) |= 3n
2 >, that is, there are points z1, . . . , zn such
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that xiR̄2z1R̄2 . . . R̄2zn. By (gen1), (M, xi) |= 22 ¬d, and so (M, z1) |= ¬d. Therefore,
by (20) and (18), we have (M, zn) |= 3n

1 >, and then obtain (M, xi) |= 3n
1 > using (com).

To show (ii), assume first that we have (M, yi) |= 3n
2 >. Then there is a point z

such that yiR̄n2 z. By (gen2), (M, yi) |= ¬d. So, by (20), (M, z) |= 3n
1 ¬d, and by

(18), (M, z) |= 3n+1
1 >. Now (M, yi) |= 3n+1

1 > follows by (com). Conversely, suppose
(M, yi) |= 3n+1

1 >, that is, there are points z1, . . . , zn, zn+1 such that

yiR̄1z1R̄1 . . . R̄1znR̄1zn+1.

By (gen2), (M, yi) |= 21 d, and so (M, z1) |= d. Therefore, by (19), (M, zn+1) |= 3n
2 >.

Finally, using (com) we obtain (M, yi) |= 3n
2 >. �

Now we can show that all the xn are distinct as follows. For every formula ψ and
3 ∈ {31 ,32 }, we introduce

3=nψ = 3nψ ∧2n+1¬ψ,

meaning ‘see ψ in n steps but not in n+1 steps.’ Define the horizontal and vertical ranks
hr(x) and vr(x) of a point x (in model M) by taking

hr(x) =
{
n, if n < ω and (M, x) |= 3=n

1 >,
∞, otherwise,

vr(x) =
{
n, if n < ω and (M, x) |= 3=n

2 >,
∞, otherwise.

The reader can readily check, using (com) and (chro), that if xR̄1y then vr(x) = vr(y),
and if xR̄2y then hr(x) = hr(y).

We claim that, for all n < ω,

vr(un) = n, (21)
hr(vn) = n, (22)
hr(xn) = vr(xn) = n. (23)

First we prove (21) by induction on n. For n = 0, it follows from the definition of x0 (see
(17)) and (gen3). Suppose that (21) holds for some n < ω. Then

vr(un+1)
(gen3)

= vr(xn+1)
L.35(i)

= hr(xn+1)
(gen4)

= hr(yn)
L.35(ii)

= vr(yn) + 1
(gen3)

= vr(un) + 1
(IH)
= n+ 1.

Now (22) and (23) follow from (21) and

hr(vn)
(gen4)

= hr(xn)
L.35(i)

= vr(xn)
(gen3)

= vr(un).

Undecidability.
We discuss first how the ‘diagonal points’ xn (with finite rank hr(xn) = vr(xn) = n)

can be used not only to show the lack of fmp, but also to encode arbitrarily large finite
parts of the ‘ω×ω-grid’ in frames for [K4,K4]. The enumeration of the points of ω×ω
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Figure 6. The enumeration pair.

we use below has been introduced in several papers dealing with undecidable multimodal
logics; see, e.g., [36, 60, 70]. (Note that in all these cases either the language had next-time
operators or all the frames were linear, neither is the case now.)

Let pair : ω → ω × ω be the function defined recursively by taking:

• pair(0) = 〈0, 0〉,

• if pair(n) = 〈0, j〉 then pair(n+ 1) = 〈j + 1, 0〉,

• otherwise, if pair(n) = 〈i+ 1, j〉 then pair(n+ 1) = 〈i, j + 1〉;

see Fig. 6. It is easy to see that pair is one-one and onto. Let ] : ω × ω → ω denote the
inverse of the function pair. If pair(n) is not on the wall (that is, the first coordinate of
pair(n) is different from 0) then define leftn to be the ] of the left neighbour of pair(n).
The reader can readily check the following important properties of these functions, for
all n > 0:

(t1) If neither pair(n) nor pair(n− 1) are on the wall then leftn = leftn−1 + 1.

(t2) If n > 1 and pair(n) is not on the wall, but pair(n− 1) is on the wall, then n > 2,
pair(n− 2) is not on the wall, and leftn = leftn−2 + 1.

(t3) pair(n) is on the wall iff pair(leftn−1) is on the wall.

(t4) Either pair(n) or pair(n− 1) is not on the wall.

We will require the following propositional variables:

• grid (marking the points of the grid),

• left (a pointer from n to leftn when pair(n) is not on the wall),

• wall (marking the wall, i.e., the pairs of the form 〈0, n〉).
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Let ϕgrid be the conjunction of (9), (10) and the following formulas:

21 22

(
21⊥ → (grid↔ 22⊥)

)
,

21 22 (21⊥ ∧ grid→ wall),

21 22 (wall→ grid),

21 22 (31 wall→ 21 (grid→ wall)
)
,

21 22

(
31> → (grid↔ 3=1

2 3=1
1 grid)

)
,

21 22

(
grid ∧31> →

(
wall↔ 32 (3=1

1 left ∧31 wall)
))
,

21 22

[
left↔

(
(3=1

1 > ∧22⊥) ∨
(
32 (3=2

1 left ∧31 wall) ∧3=1
2 3=2

1 left
)

∨
(
32 (3=1

1 left ∧ ¬31 wall) ∧3=1
2 3=1

1 left
) )]

.

The following lemma, showing that ϕgrid ‘forces’ the ω × ω-grid onto ‘diagonal points of
finite rank’, is proved in [26]:

LEMMA 36. Suppose that M is a model based on a rooted frame F = 〈W,R1, R2〉 for
[K4,K4]. If (M, r) |= ϕgrid then the following hold, for all n,m < ω and all x ∈W such
that hr(x) = n and vr(x) = m:

(i) (M, x) |= grid iff n = m,

(ii) (M, x) |= 3=1
1 left iff n > 0, pair(n− 1) is not on the wall and m = leftn−1,

(iii) (M, x) |= wall iff n = m and pair(n) is on the wall,

(iv) (M, x) |= left iff pair(n) is not on the wall and m = leftn.

Various undecidable problems can be ‘represented’ on the ω × ω-grid, say, versions of
the halting problems for Turing machines, register machines, etc., Post’s correspondence
problem, as well as infinite tiling problems.

Here we show as an example for reducing an undecidable tiling problem to the sat-
isfiability problem for logics that (i) contain [K4,K4] and (ii) have among their frames
a product of two rooted Noetherian linear orders each of which contains an infinite de-
scending chain of distinct points. (For other similar logics slight modifications of the
proof might be necessary, see [26] for a general argument.)

A tile type is a 4-tuple of colours

t = 〈left(t), right(t), up(t), down(t)〉 .

For a finite set T of tile types and a subset X ⊆ ω × ω, we say that T tiles X if there
exists a function (called a tiling) τ from X to T such that, for all 〈i, j〉 ∈ X,

• if 〈i, j + 1〉 ∈ X then up(τ (i, j)) = down(τ (i, j + 1)) and

• if 〈i+ 1, j〉 ∈ X then right(τ (i, j)) = left(τ (i+ 1, j)).

The following ‘ω × ω-tiling problem’ is undecidable (see [81, 9]): given a finite set T of
tile types, decide whether T can tile ω × ω.
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Given a finite set T of tile types, we introduce a propositional variable t, for every
t ∈ T . Let ϕT be the conjunction of the following formulas:

21 22 (grid↔
∨
t∈T

t),

21 22

∧
t 6=t′∈T

¬(t ∧ t′),

21 22

∧
t,t′∈T

up(t′)6=down(t)

(
t→ 22 (3=1

1 left→ ¬31 t
′)
)
,

21 22

∧
t,t′∈T

right(t′) 6=left(t)

(
t→ 22 (left→ ¬31 t

′)
)
.

For every n < ω, let
planen = {〈i, j〉 | ](i, j) ≤ n}.

If formulas (9) and (10) are satisfied in a model M based on a frame for [K4,K4],
then for all numbers a, b < ω and x ∈W with hr(x) = a and vr(x) = b, there exists what
we call a perfect a × b-rectangle starting at x, that is, there are points xi,j (for i ≤ a,
j ≤ b) such that

• x = xa,b,

• hr(xi,j) = i and vr(xi,j) = j,

• xi,jR̄1xk,j for i > k, and xi,jR̄2xi,k for j > k.

(Indeed, given x, take an a-long R̄1-path and a b-long R̄2-path starting from x, and then
‘close them’ under the Church-Rosser property.)

Now a straightforward induction on n shows the following:

LEMMA 37. Let M be a model that is based on a frame for [K4,K4] with root r and
suppose that (M, r) |= ϕgrid ∧ ϕT . Then, for every n < ω, every x ∈ W such that
hr(x) = vr(x) = n, and every perfect n × n-rectangle xi,j (i ≤ n, j ≤ n) starting at x,
the function τ : planen → T defined by

τ(i, j) = t iff (M, x](i,j),](i,j)) |= t

is a tiling of planen.

Now, using Lemma 37, it is straightforward to show that if ϕ∞∧ϕgrid∧ϕT is satisfiable
in a frame for [K4,K4] then T tiles planen, for all n < ω. A standard compactness
argument (or König’s lemma) shows that if a given finite set T of tile types tiles planen
for every n < ω, then it actually tiles the whole ω×ω-grid. On the other hand, it is easy
to see that if T tiles ω×ω then ϕ∞ ∧ϕgrid ∧ϕT is satisfiable in a product of two rooted
Noetherian linear orders each of which contains an infinite descending chain of distinct
points.

With the help of some additional ‘machinery’, one can even reduce ‘stronger’ undecid-
able statements (like recurrent Turing machine and tiling problems) to the satisfiability
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problem for certain products of ‘transitive’ logics. For instance, the following is shown
in [26]:

THEOREM 38. Let L1 be any logic from the list

K4, K4.1, K4.2, K4.3, S4, S4.1, S4.2, S4.3,

GL, GL.3, Grz, Grz.3, Log{〈ω,<〉}, Log{〈ω,≤〉},

and L2 be any of
Log{〈ω,<〉}, Log{〈ω,≤〉}, GL.3, Grz.3.

Then any Kripke complete bimodal logic L in the interval

[L1, L2] ⊆ L ⊆ L1 × L2

is Π1
1-hard.

We also obtain the following interesting corollary. As the commutator of two recur-
sively axiomatisable logics is recursively axiomatisable by definition, Theorem 38 yields a
number of Kripke incomplete commutators of Kripke complete and finitely axiomatisable
logics:

COROLLARY 39. Let L1 and L2 be like in Theorem 38. Then the commutator [L1, L2]
is Kripke incomplete.

Higher dimensional decidable and undecidable products

Products of more than two modal logics are often undecidable and lack the fmp. Let us
first discuss some exceptions.

It is not hard to see that any product L1× · · · ×Ln of Alt and K logics has the finite
depth property, that is, it is determined by some class of frames of finite depth. Indeed,
suppose ϕ /∈ L1 × · · · × Ln for some MLn-formula ϕ. Then there are rooted frames Fi,
i = 1, . . . , n, such that Fi |= Li and ϕ is refuted at the root of F1 × · · · × Fn. By a
standard unravelling argument, for each i = 1, . . . , n, there is an intransitive tree Ti and
a p-morphism hi from Ti onto Fi. So we always have Ti |= Li. Note that if Li = Alt
then the unravelling Ti of Fi is just a chain of irreflexive points. It is straightforward to
check that the function h defined by

h(x1, . . . , xn) = 〈h1(x1), . . . , hn(xn)〉

is a p-morphism from T1×· · ·×Tn onto F1×· · ·×Fn (cf. Proposition 9). Now we prune all
the trees Ti down to the modal depth md(ϕ) of ϕ. Clearly, the resulting product frame
T−1 ×· · ·×T−n is of depth n ·md(ϕ) and it is a frame for L1×· · ·×Ln. A straightforward
induction on the stucture of ϕ shows that it refutes ϕ at its root.

As one can prove by a standard filtration argument that if an n-modal logic L has
the finite depth property, then it has the fmp as well, we obtain the following theorem
of Gabbay and Shehtman [24]:

THEOREM 40. Any product of Alt and K logics has the fmp. In particular, Kn and
Altn have the fmp, for any natural number n ≥ 2.

As a consequence of this theorem and Theorem 26 we have:
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THEOREM 41. Altn is decidable, for any natural number n ≥ 2.

In fact, it can be shown that Altn has the polynomial product fmp and it is coNP-
complete.

On the other hand, the logic Kn is not so simple. Though it has the fmp, one cannot
use it for a decision algorithm, as Kn is not only not finitely axiomatisable, but it is
undecidable whether a finite n-frame is a frame for it (cf. Theorem 25). In fact, the
following general result is shown in [42]:

THEOREM 42. Let n ≥ 3 and let L be any n-modal logic such that Kn ⊆ L ⊆ S5n.
Then L is undecidable and lacks the product fmp.

The proof of this theorem (and that of Theorem 25) uses a reduction of a deep result of
Hirsch and Hodkinson [40] saying that representability is undecidable for finite relation
algebras.

Note that, unlike Kn, logics like K4n and S5n do not even have the fmp (for K4n

this follows from Theorem 34, and for S5n this was shown in [53]). The undecidability of
S5n was first shown by Maddux [58] in the algebraic framework of diagonal-free cylindric
algebras. He used a reduction of the word problem of semigroups to prove the following
general result:

THEOREM 43. Any n-modal logic L in the interval

[S5,S5, . . . ,S5] ⊆ L ⊆ S5n

is undecidable whenever n ≥ 3.

Another proof via the connection with first-order logic (see Section 3.2) that uses a
reduction of the ω × ω tiling problem can be found in [23] (see also [47] for possible
generalisations).

4 BETWEEN FUSIONS AND PRODUCTS

A natural idea for reducing the strong interaction between modal operators of product
logics is to consider logics determined by (not necessarily generated) subframes of product
frames. Worlds are still tuples, the relations still act coordinate-wise, but not all tuples
of the Cartesian product are present, and so the commutativity and Church–Rosser
properties do not necessarily hold. This kind of restriction on the ‘domains’ of modal
operators is similar to ‘relativisations’ of the quantifiers in first-order logic and algebraic
logic, where it indeed results in improving the bad algorithmic behaviour, cf. [63, 61].

This idea gives rise to the following combinations of logics. First, we choose a class
of ‘desirable’ subframes of product frames. This can be any class: the class of all such
subframes, the so-called ‘locally cubic’ frames, frames that ‘expand’ along one of the
coordinates (see below for precise definitions), a class of frames satisfying some (modal
or first-order) formulas, etc. Having chosen such a class K, we then take the logic
determined by those subframes of the appropriate product frames that belong to K.
Thus, each choice of K defines a new combination operator on logics:

DEFINITION 44. Let n > 1 be a natural number and K a class of subframes of n-ary
product frames. Given Kripke complete (uni)modal logics L1, . . . , Ln formulated in the
language having 2i (i = 1, . . . , n), the K-relativised product (L1×· · ·×Ln)K of L1, . . . , Ln
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is defined by taking

(L1 × · · · × Ln)K = Log{G ∈ K | G ⊆ F1 × · · · × Fn for some Fi ∈ FrLi, i = 1, . . . , n}.

Observe that if we choose K to be the class of all product frames F1 × · · · × Fn such
that Fi ∈ FrLi, then the K-relativised product of the Li is just their usual product.

We discuss here in detail two kinds of ‘relativised product’ operators: arbitrary and
expanding relativisations.

Arbitrary relativisations.

We begin by considering the combination operator determined by the class SFn of all
subframes of n-ary product frames. SFn-relativised products of logics will be called arbi-
trarily relativised products. Since SFn contains frames that do not satisfy commutativity
and/or Church–Rosser properties,

(L1 × · · · × Ln)SFn ( L1 × · · · × Ln.

On the other hand, unlike product logics, arbitrarily relativised products do not neces-
sarily contain the fusion of their components. For example, consider the minimal deontic
logic D, which is known to be determined by the class of serial frames. The formula 32>
clearly belongs to K ⊗D, but is refuted in any finite subframe of, say, 〈ω,<〉 × 〈ω,<〉,
and so 32> /∈ (K×D)SF2 .

However, for a large class of natural logics, arbitrarily relativised products do contain
the fusions. A Kripke complete modal logic L is called a subframe logic if the class
of Kripke frames for L is closed under taking (not necessarily generated) subframes (see
Chapter 7 of this handbook). Typical examples of subframe logics are modal logics whose
classes of Kripke frames are definable by universal first-order formulas, such as K, Alt,
T, K4, S4, S5, K5, K45, S4.3, and K4.3. Note, however, that subframe logics like
GL, GL.3, Grz are not first-order definable. It is not hard to see the following:

PROPOSITION 45. If L1, . . . , Ln are subframe logics, then

L1 ⊗ · · · ⊗ Ln ⊆ (L1 × · · · × Ln)SFn .

As the following result of [54] shows, for many standard subframe logics the converse
inclusion holds as well. Thus in several cases ‘arbitrary relativisation’ can be regarded
as a ‘many-dimensional’ semantical characterisation of fusions of these logics.

THEOREM 46. Let Li ∈ {K, T, K4, S4, S5, S4.3}, for i = 1, . . . , n. Then

(L1 × · · · × Ln)SFn = L1 ⊗ · · · ⊗ Ln.

The proof is based on the following lemma that can be proved by constructing the
necessary p-morphism in a step-by-step manner, see [54]:

LEMMA 47. Suppose that Li ∈ {K, T, K4, S4, S5, S4.3}, i = 1, . . . , n, and let G =
〈W,S1, . . . , Sn〉 be a countable rooted n-frame such that 〈W,Si〉 |= Li for all i = 1, . . . , n.
Then G is a p-morphic image of a subframe of some product frame for L1 × · · · × Ln.

It is not clear how far Theorem 46 can be generalised. It definitely does not hold
for all subframe logics, not even for those of them that are characterised by universally
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definable classes of frames. Take, for instance, the logic K5 that is characterised by the
class of Euclidean frames, i.e., frames 〈W,R〉 satisfying the universal (Horn) sentence

∀x∀y∀u
(
R(u, x) ∧R(u, y)→ R(x, y)

)
.

In particular, frames for K5 have the property

∀x∀u
(
R(u, x)→ R(x, x)

)
.

Now consider the formula

ϕ = 31

(
p ∧32(q ∧ ¬p)

)
∧2122(q → ¬31q).

It is clearly satisfiable in the following frame for K5⊗K:

s --s sj
p q

R1

R1

R2

On the other hand, it is not hard to see that ϕ is not satisfiable in any subframe of a
product frame for K5×K. Therefore,

K5⊗K ( (K5×K)SF2 ( K5×K.

Other kinds of logics for which Theorem 46 does not hold are those having frames with
a finite bound on their branching like Alt. The formula

ψ = p ∧31

(
¬p ∧32q

)
∧32

(
¬p ∧31r

)
∧2122(q → ¬r)

is clearly satisfiable in the Alt⊗Alt-frame

s s
s ss

-

-
6 6

p R1

r qR1

R2 R2

On the other hand, it should be clear that ψ is not satisfiable in any subframe of a frame
for Alt×Alt. Thus,

Alt⊗Alt ( (Alt×Alt)SF2 ( Alt×Alt.

Expanding relativisations.

First-order modal and intuitionistic logics motivate our next combination operator.
(To keep the notation simple, we concentrate on the n = 2 case only.)

DEFINITION 48. A 2-frame G = 〈W,S1, S2〉 is called an expanding relativised product
frame if there exist frames F1 = 〈U1, R1〉 and F2 = 〈U2, R2〉 such that

• G is a subframe of F1 × F2, and

• for all 〈w1, w2〉 ∈W and u ∈ U1, if w1R1u then 〈u,w2〉 ∈W .
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Define EX to be the class of all expanding relativised product frames. Given Kripke com-
plete unimodal logics L1 and L2, the logic (L1×L2)EX is called the expanding relativised
product of L1 and L2.

Similarly to Proposition 45, if both L1 and L2 are subframe logics then (L1 × L2)EX

is a (conservative) extension of both L1 and L2. Moreover, it is easy to see that every
expanding relativised product frame satisfies the left commutativity and Church–Rosser
properties (but not necessarily right commutativity). Now define the e-commutator

[L1, L2]EX

of L1 and L2 as the smallest bimodal logic containing L1, L2 and the axioms coml
12

and chr12. Then clearly we have

[L1, L2]EX ⊆ (L1 × L2)EX.

Similarly to Theorem 21, it can be shown that for some cases the e-commutator and the
expanding relativised product coincide:

THEOREM 49. Suppose L1 and L2 are Kripke complete unimodal logics such that L1 is
one of K, T, K4, S4, S5 and L2 is Horn axiomatisable. Then

(L1 × L2)EX = [L1, L2]EX.

No other general axiomatisation result for expanding relativised products is known.
As concerns decision problems, it is not hard to see that expanding relativised products

are reducible to products. Indeed, let ϕ be anML2-formula and e a propositional variable
which does not occur in ϕ. Define by induction on the construction of ϕ anML2-formula
ϕe as follows:

pe = p (p a propositional variable),
(ψ ∧ χ)e = ψe ∧ χe, (¬ψ)e = ¬ψe,
(21ψ)e = 21ψ

e, (22ψ)e = 22(e→ ψe).

By a structural induction on ϕ, one can easily prove the following:

PROPOSITION 50. For all Kripke complete unimodal logics L1 and L2 and all ML2-
formulas ϕ,

ϕ ∈ (L1 × L2)EX iff
(
e ∧2

≤md(ϕ)
1 2

≤md(ϕ)
2 (e→ 21e)

)
→ ϕe ∈ L1 × L2.

As a consequence of this and the results in Section 3.4, we obtain that expanding
relativised products are usually decidable if one of their components is an S5- or K-like
logic.

On the other hand, as we saw in Section 3.4, products of ‘transitive’ logics with frames
of arbitrarily large finite or infinite cluster-depth are undecidable. The following result of
[27] shows that expanding relativised product logics with components having transitive
frames of arbitrarily large finite cluster-depths can be decidable:

THEOREM 51. If L1, L2 ∈ {GL, Grz, GL.3, Grz.3} then (L1 × L2)EX is decidable.
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Here we discuss the main points of the proof for the case of (GL ×GL)EX only. For
the other cases, as well as for more general results, consult [27].

We remind the reader that Fr GL consists of all the irreflexive, transitive and Noethe-
rian frames. Recall that the depth dF(x) of a point x in an irreflexive tree F = 〈W,R〉
is defined to be the R-distance of x from the root. More precisely, the depth of the root
is 0, and the depth of immediate R-successors of a point of depth n is n + 1. If for no
n < ω the point x is of depth n, then we say that x is of infinite depth.

The first important step in the proof is to show that (GL×GL)EX has the ‘expanding’
version of the product fmp:

LEMMA 52. Given someML2-formula ϕ, if ϕ is satisfiable in a frame for (GL×GL)EX

then ϕ is satisfiable in an expanding relativised product frame H that is a subframe of a
product of two finite trees G1 and G2. Moreover, G1 = 〈U1, S1〉 can be chosen such that,
for every x ∈ U1,

• |{y | 〈x, y〉 in H}| ≤
(
|subϕ|+ 1

)
! d

G1 (x)+1, and

• x has at most |subϕ| ·
(
|subϕ|+ 1

)
! d

G1 (x)+1 immediate S1-successors.

Proof. By a standard unravelling argument one can show that every rooted frame
for GL is a p-morphic image of a Noetherian tree-like frame. Moreover, similarly to
Proposition 9, one can show that (GL×GL)EX is determined by expanding relativised
product frames that are subframes of products of two Noetherian tree-like frames. So we
may assume that our formula ϕ is satisfied at the root 〈r1, r2〉 of some model M = 〈H,V〉
that is based on an expanding relativised subframe F = 〈W,R′1, R′2〉 of the product of
two (possibly infinite) Noetherian tree-like frames F1 = 〈W1, R1〉 and F2 = 〈W2, R2〉.

For i = 1, 2, call a point x in Wi Ri-maximal in a set X ⊆ Wi, if x ∈ X and there
is no x′ ∈ X with xRix

′. Now we take the closure U of the set {〈r1, r2〉} under the the
following three rules:

• 31-rule: if 〈x, y〉 ∈ U , (M, 〈x, y〉) |= 31ψ, for some 31ψ ∈ subϕ, and there is no
〈x′, y〉 ∈ U such that xR1x

′ and (M, 〈x′, y〉) |= ψ, then choose a point x′ ∈W1 that
is R1-maximal in the set {z | xR1z, 〈z, y〉 ∈W and (M, 〈z, y〉) |= ψ} (such a point
exists because F1 is Noetherian), and set U := U ∪ {〈x′, y〉}.

• 32-rule: if 〈x, y〉 ∈ U , (M, 〈x, y〉) |= 32ψ, for some 32ψ ∈ subϕ, and there is no
〈x, y′〉 ∈ U such that yR2y

′ and (M, 〈x, y′〉) |= ψ, then choose a point y′ ∈W2 that
is R2-maximal in the set {z | yR2z, 〈x, z〉 ∈W and (M, 〈x, z〉) |= ψ} (such a point
exists because F2 is Noetherian), and set U := U ∪ {〈x, y′〉}.

• Square-rule: if 〈x, y〉 ∈ U , xR1x
′ and 〈x′, y〉 /∈ U , then set U := U ∪ {〈x′, y〉}.

Now let S′i = R′i ∩ (U × U) (i = 1, 2) and H = 〈U, S′1, S′2〉. Take also G1 = 〈U1, S1〉 and
G2 = 〈U2, S2〉, where U1 = {x ∈W1 | 〈x, r2〉 ∈ U}, U2 = {y ∈W2 | ∃x ∈ U1 〈x, y〉 ∈ U},
and Si = Ri ∩ (Ui × Ui) (i = 1, 2). Then clearly, H is an expanding relativised subframe
of the product of Noetherian tree-like frames G1 and G2.

We show that G1 and G2 are in fact finite trees with the required bounds. First, we
claim that

if x is of finite depth in G1, then |{y | 〈x, y〉 ∈ U}| ≤
(
|subϕ|+ 1

)
! d

G1 (x)+1. (24)
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Indeed, we can proceed by induction on n. If n = 0, then by applying the 32-rule
to the root 〈r1, r2〉 of H, we can obtain ≤ |subϕ| immediate S′2-successors of the form
〈r1, y〉. In view of maximality, at each of these points the number of formulas of the form
32ψ ∈ subϕ to which the 32-rule still applies is ≤ |subϕ| − 1. We proceed with the
same kind of argument and finally get

|{y | 〈x, y〉 ∈ U}| ≤ 1 + |subϕ|+ |subϕ| · (|subϕ|−1) + · · ·+ |subϕ| ! ≤ (|subϕ|+ 1) ! .

The induction step for y of depth n+ 1 is considered analogously. The only difference is
that instead of one ‘starting’ point we should start applying the 32-rule to all points of
the form 〈x, y〉 such that 〈z, y〉 ∈ U for the unique point z with d(z) = n and zS1y, that
is to |{y | 〈z, y〉 ∈ U}| ≤

(
|subϕ|+ 1

)
!n+1 many points.

Next, we claim that every point x of finite depth in G1 has ≤ |subϕ|·
(
|subϕ|+1

)
! d(x)+1

immediate S1-successors. Indeed, it follows from (24) and the fact that the 31-rule can
be applied at most |subϕ| times to a point 〈x, y〉.

Finally, we claim that every point in G1 is of finite depth, that is, G1 is a tree. Indeed,
since G1 is Noetherian, we cannot have infinite ascending chains of distinct points in it.
Suppose G1 still contains a point x of infinite depth. This means that there is an infinite
descending chain . . . S1x2S1x1S1x. Let z be an S1-maximal point of finite depth such
that zS1x. By (24), |{y | 〈z, y〉 ∈ U}| is finite. Therefore, we may apply the 31-rule
to points of the form 〈z, y〉 finitely many times only, and so there exists an immediate
S1-successor z′ of z located properly between z and x. But then d(z′) = d(z) + 1, and so
the depth of z′ is finite, which is a contradiction.

Therefore, G1 is a Noetherian tree with finite branching. Therefore, by König’s lemma,
it must be finite. So G2 is finite as well. This completes the proof of Lemma 52. �

We are now in a position to prove that (GL ×GL)EX is decidable. It is to be noted
that the ‘expanding product fmp’ does not give decidability automatically because (i)
Lemma 52 does not provide us with an effective upper bound for the size of a model
refuting a given formula, nor (ii) do we know that (GL×GL)EX is finitely axiomatisable.

Instead, we will use a version of Kruskal’s tree theorem [50]. Given a finite set Σ, a
labelled Σ-tree is a pair T = 〈〈T,<〉 , l〉, where 〈T,<〉 is a (transitive, irreflexive) tree and
l is a function from T to Σ. Given two finite labelled Σ-trees Ti = 〈〈Ti, <i〉 , li〉, i = 1, 2,
we say that T1 is embeddable into T2 if there exists an injective map ι : T1 → T2 such
that, for all u, v ∈ T1,

• u <1 v iff ι(u) <2 ι(v),

• l2(ι(u)) = l1(u).

Now Kruskal’s tree theorem says that for every infinite sequence T1,T2, . . . of finite
labelled Σ-trees, there exist i < j < ω such that Ti is embeddable into Tj .

In order to use this theorem, we again turn our models to quasimodels. The quasimod-
els used here are similar to the L×K-quasimodels of Section 3.4, but they do differ from
them in two important aspects: (i) quasistates are now not intransitive, but transitive
and irreflexive trees; (ii) runs are not total, but only partial functions over the underlying
frame.

To be precise, given an ML2-formula ϕ, a quasistate for ϕ is a finite labelled (transi-
tive, irreflexive) tree 〈〈T,<〉 , t〉 where the label t(x) of each x ∈ T is a type for ϕ, and
〈〈T,<〉 , t〉 satisfies the 32-saturation condition (qm1) of Section 3.4.
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A basic structure for ϕ is a pair 〈F, q〉 such that F = 〈W,R〉 is a finite (transitive,
irreflexive) tree and q a function associating with each w ∈ W a quasistate q(w) =
〈〈Tw, <w〉 , tw〉 for ϕ. We call such a basic structure small if, for all x, y ∈W ,

(sm1) |Tx| ≤
(
|subϕ|+ 1

)
! d

F(x)+1,

(sm2) x has at most |subϕ| ·
(
|subϕ|+ 1

)
! d

F(x)+1 immediate R-successors in F, and

(sm3) if xRy and x 6= y then q(x) is not embeddable into q(y).

For every n < ω, let Qn be the set of all small basic structures 〈F, q〉 such that F is a
finite (transitive, irreflexive) tree of depth n.

LEMMA 53. There is an n < ω such that Qn = ∅, and so the set of small basic structures
for ϕ is finite and can be constructed effectively from ϕ.

Proof. Suppose otherwise. Define a relation E on the set Q of all small basic structures
as follows. For Q = 〈F, q〉, Q′ = 〈F′, q′〉 in Q, set QEQ′ iff F is an ‘initial subtree’ of
F′ and q coincides with q′ on the points of F. Clearly, for every Q′ ∈ Qn+1, there is
some Q ∈ Qn such that QEQ′. Therefore, by König’s infinity lemma, there is an infinite
E-chain Q0EQ1E . . . EQnE . . . in Q such that Qn ∈ Qn for n < ω. Since Qn+1 is always
an extension of Qn, their union Q =

⋃
n<ω Qn is also a basic structure. Let Q = 〈F, q〉

and F = 〈W,R〉. Then F is an infinite tree with finite branching. By König’s lemma,
it must have an infinite branch x0Rx1R . . . . Then, by Kruskal’s theorem, there exist
i < j < ω such that q(xi) is embeddable into q(xj). But xi and xj already belonged to
the underlying tree of Qj , contrary to Qj being in Qj . �

A run through a basic structure 〈F, q〉 is a partial function r from W giving for each
w ∈ dom r a point r(w) ∈ Tw such that, for all x ∈ W , if x ∈ dom r and xRy then
y ∈ dom r. Coherent and saturated runs are defined as in Section 3.4. Finally, we call a
triple 〈F, q,R〉 a (GL×GL)EX-quasimodel (for ϕ) if 〈F, q〉 is a basic structure and R is
a set of coherent and saturated runs through it, satisfying the following conditions (cf.
(qm2)–(qm4) of Section 3.4):

(eqm2) ϕ ∈ tw0(x0), where w0 and x0 are the roots of F and 〈Tw0 , <w0〉, respectively;

(eqm3) for all r, r′ ∈ R and for all x, y ∈ dom r ∩ dom r′, wr(x) <x wr′(x) iff wr(y) <y
wr′(y);

(eqm4) for all x ∈W and w ∈ Tx there is r ∈ R such that r(x) = w.

We call a quasimodel small if the underlying basic structure is small.

LEMMA 54. ϕ is satisfiable in a frame for (GL×GL)EX iff there is a small (GL×GL)EX-
quasimodel for ϕ.

Proof. Turning a quasimodel to a ‘real’ model is easy, so let us concentrate on the
opposite direction. We may assume that ϕ is satisfied in a model M = 〈H,V〉 based on
an expanding relativised subframe H of a product G1 × G2 satisfying the conditions of
Lemma 52. We can turn M to a (GL×GL)EX-quasimodel 〈G1, q,R〉 as follows. Suppose
that Gi = 〈Ui, Si〉, for i = 1, 2. For every x ∈ U1, let q(x) = 〈〈Tx, <x〉 , tx〉, where

Tx = {y ∈ U2 | 〈x, y〉 in H}, <x = S2 ∩ (Tx × Tx),
tx(y) = {ψ ∈ subϕ | (M, 〈x, y〉) |= ψ}.
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Finally, for every y ∈ U2 define a run ry through 〈G1, q〉 by taking

dom ry = {x ∈ U1 | 〈x, y〉 in H}

and then ry(x) = y, for every x ∈ dom ry. Put R = {ry | y ∈ U2}. It is straightforward
to check that 〈G1, q,R〉 is indeed a (GL ×GL)EX-quasimodel for ϕ. Moreover, by the
assumption on M, the basic structure 〈G1, q〉 is finite. To show that we can turn it to
a basic structure satisfying (sm3), suppose that there are x, y ∈ U1 such that xS1y and
q(x) is embeddable into q(y) by an embedding ι. Then we replace in G1 the subtree
generated by x with the subtree generated by y, thus obtaining some tree G′ = 〈U ′, S′〉.
Let q′ be the restriction of q to U ′. We define new runs through 〈G′, q′〉 by taking, for all
r, r′ ∈ R such that x ∈ dom r, y ∈ dom r′, ι(r(x)) = r′(y), and for all z ∈ U ′, z ∈ dom r,

(r + r′)(z) =
{
r(z), if zS1x,
r′(z), if z = y or yS1z.

Let R′ be the collection of these new runs together with those runs from R that ‘start at’
a point z with yS1z. It is straightforward to check that 〈G′, q′,R′〉 is a (GL ×GL)EX-
quasimodel for ϕ. Since G1 is finite, after finitely many repetitions of this procedure the
underlying basic structure will satisfy (sm3). To comply with the cardinality conditions
(sm1) and (sm2), we can use the construction from the proof of Lemma 52. Then,
again we can get rid of the embeddable pairs as above, and so on. As at each step the
underlying tree can get only smaller, we end up with a small (GL×GL)EX-quasimodel
for ϕ. �

Now we can describe the decision algorithm for (GL × GL)EX as follows. Given a
formula ϕ, by Lemma 53, we can effectively construct the set of all small basic structures
for ϕ. Then for each such small basic structure, we check whether it is a (GL×GL)EX-
quasimodel for ϕ. By Lemma 54, this way we find a quasimodel for ϕ iff ϕ is satisfiable
in a frame for (GL×GL)EX.

Observe that this decision procedure does not give an even primitive recursive com-
plexity bound. In fact, using a reduction of the reachability problem for lossy channel
systems (known to be non-primitive recursive by Schnoebelen [73]), it is shown in [27]
that there is no primitive recursive decision algorithm for (GL×GL)EX.

Other expanding relativised products can even be more complex. The results in [46]
suggest that logics like (Log{〈N, <〉}×Log{〈N, <〉})EX or (Log{〈N, <〉}×S4)EX are unde-
cidable. However, nothing is known about the decision problem of products ‘expanding
along’ branching transitive frames with infinite ascending chains, such as (K4 ×K4)EX

or (S4× S4.3)EX. Note that these logics do not have the ‘expanding product fmp’.
Another open direction of research is to study the decision problem for the finitely

axiomatisable logics obtained by adding either only one of the commutativity axioms or
the Church–Rosser axioms to decidable fusions.

5 OTHER COMBINATIONS

Of course, even within the constraints of the combination principles (C1)–(C3) for-
mulated in the introduction, there are infinitely many ways of combining modal logics.
Though much research have been done on multimodal logics, very little of it can be
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regarded as systematic investigation into properties of some combination method. More-
over, the ‘global analysis’—as explained in Chapter 7 of this handbook for the unimodal
case—of multimodal logics is still in its infancy. (In fact, most of the investigations into
fusions and products can be considered as the first detailed case studies.) The translation
of [49] of multimodal logics into unimodal ones is not helpful either in the combination
context, as it makes the information about the ‘components’ virtually disappear.

Releasing (parts of) the criteria (C2) and (C3) allows us to treat more ‘multi-aspect’
approaches to modal logic as combinations. The possibilities are again endless, below
we discuss a rather ad hoc list of examples. Many more ideas that are relevant to
combining modal logics can be found in the ‘combining systems’ literature, see e.g. the
series ‘Frontiers of Combining Systems (FroCoS)’ [8, 14, 45, 2].

Interaction operators. Interaction between the components can be handled not only
by adding interaction axioms, but also by enriching the language with ‘dimension-
connecting’ connectives.

Perhaps the simplest and most natural operations of this sort are the diagonal con-
stants dij . Given two natural numbers i and j with 1 ≤ i, j ≤ n, the truth-relation for
the constant dij in models over (subframes of) n-ary product frames is defined as follows:

(M, 〈u1, . . . , un〉) |= dij iff ui = uj .

The set of n-tuples satisfying dij is usually called the (i, j)-diagonal element. The main
reason for introducing such constants has been to give a ‘modal treatment’ of equality
of classical first-order logic, see Section 3.2 above. Modal algebras for the product logic
S5n extended with diagonal elements are called representable cylindric algebras and are
extensively studied in the algebraic logic literature; see e.g. [39, 41] and the references
therein.

Another natural way of connecting dimensions is via so-called ‘jump’ modalities. Given
a function π : {1, . . . , n} → {1, . . . , n} (such a map can be called a jump), define the
truth-relation for the unary modal operator sπ in models over (subframes of) product
frames as follows:

(M, 〈u1, . . . , un〉) |= sπϕ iff (M, 〈uπ(1), . . . , uπ(n)〉) |= ϕ.

These modal operators are often called (generalised) substitutions, since by taking

P (xπ(1)−1, . . . , xπ(n)−1)• = sπP (x0, . . . , xn−1) (P an atomic formula)

one can extend the translation • of Section 3.2 above from formulas with a fixed order of
the variables to arbitrary first-order formulas. Note that in cubic universal product S5n-
frames certain substitutions are expressible with the help of the boxes and the diagonal
constants [39]. Various versions of modal algebras corresponding to products of S5 logics
with substitutions and with or without diagonal constants (e.g., polyadic and substitution
algebras) are introduced by Halmos [33, 34] and Pinter [64, 65] and have been studied in
the algebraic logic literature ever since.

Valuation restrictions. One may try to loosen the strong interaction between the
components of product logics by imposing restrictions on possible valuations in models
over (subframes of) product frames. In general, the resulting formalisms will not be
closed under the rule of Substitution, and so do not satisfy (C2).
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DEFINITION 55. Let M1 = 〈F1,V1〉 and M2 = 〈F2,V2〉 be Kripke models that are
based on respective frames F1 = 〈W1, R1〉 and F2 = 〈W2, R2〉, and let Φ(x1, x2) be a
formula in the first-order language L having two unary predicate symbols V1, V2 and two
binary predicate symbols. Then a model

MΦ =
〈
F1 × F2,V

Φ
〉

is said to be a Φ-flat product of M1 and M2 if, for all propositional variables p and all
u1 ∈W1, u2 ∈W2,

〈u1, u2〉 ∈ VΦ(p) iff Ip |= Φ[u1, u2],

where Ip is the first-order L-structure Ip = 〈W1 ∪W2,V1(p),V2(p), R1, R2〉. The valua-
tions in flat-product models are called flat valuations.

If Φ is a Boolean combination of V1(x1) and V2(x2) then we say that MΦ is a Boolean-
flat model.

Boolean-flat models are introduced and studied in [21, 37]. Various special cases of flat
valuations are discussed for many-dimensional temporal logics in [21, 22] and for temporal
arrow logics in [61]. Satisfiability in Boolean-flat models can be reduced to satisfiability in
the component models, as the following ‘flat product decomposition theorem’ of Gabbay
and Shehtman [25, 23] shows:

THEOREM 56. Let MΦ be a Boolean-flat product of models M1 and M2. Then for
every ML2-formula ϕ, there are a finite set Iϕ and unimodal formulas ϕ1

i (with 21) and
ϕ2
i (with 22), i ∈ Iϕ, such that, for all worlds 〈u1, u2〉 in MΦ,

(MΦ, 〈u1, u2〉) |= ϕ iff ∃i ∈ Iϕ
(
(M1, u1) |= ϕ1

i and (M2, u2) |= ϕ2
i

)
.

Modalising one logic with another. Another possibility is to take some combination
method satisfying (C1)–(C3) and then consider a fragment of the full modal language
only. The general methodology of ‘temporalising’ a logic, introduced by Finger and
Gabbay [17], results in such a combination when applied to two modal logics:

DEFINITION 57. The set of modalised formulas is the smallest set Γ of ML2-formulas
such that:

• if ϕ is an ML1-formula then ϕ ∈ Γ,

• Γ is closed under Boolean combinations,

• if ϕ ∈ Γ then 32ϕ ∈ Γ and 22ϕ ∈ Γ.

We will evaluate modalised formulas in modalised models. These are structures of the
form M = 〈F, f〉, where F = 〈W,R〉 is a frame and f is a function mapping each w ∈W to
a pair f(w) = 〈Mw, xw〉 with Mw being a Kripke model and xw a world in it. The truth-
relation ‘M, w |= ϕ’ for modalised formulas ϕ and worlds w in F is defined inductively
as follows:

• M, w |= ψ iff (Mw, xw) |= ψ, whenever ψ is an ML1-formula,

• M, w |= ¬ψ iff M, w 6|= ψ,

• M, w |= ψ ∧ χ iff M, w |= ψ and M, w |= χ,
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• M, w |= 32ψ iff there is v ∈W such that wRv and M, v |= ψ.

We say that ϕ is true in M if M, w |= ϕ for all w ∈W .
Now let L1 and L2 be two Kripke complete unimodal logics formulated in the language

ML1 in such a way that they have different modal operators (say, 31,21 and 32,22,
respectively). The modalisation of L1 with L2 is the set L2[L1] of modalised formulas
that are true in all modalised models M = 〈F, f〉 where

• F is a frame for L2, and

• for all w in F, the underlying frame of Mw is a frame for L1.

It is not hard to see that L2[L1] is a decidable subset of all ML2-formulas, whenever
L1 and L2 are both decidable. In fact, this is a consequence of Theorem 5, as L2[L1] is
a fragment of the fusion of L1 and L2 in the sense that L2[L1] is the set of all modalised
formulas in L1 ⊗ L2 (cf. the proof of Theorem 3).

E-connections. This combination method is introduced by Kutz et al. [56, 55] in the
more general setting of ‘abstract description systems.’ When applied to modal logics,
this method takes disjoint Kripke models for each component and connects their domains
via ‘link relations.’ These ‘connections’ then also appear explicitly in the language.

DEFINITION 58. Suppose that we have n ‘copies’ of the unimodal language ML1 in
such a way that their sets of propositional variables are disjoint (say, pi0, p

i
1, . . . for the

ith copy) and their modal operators are disjoint as well (say, 2i and 3i for the ith
copy). Let J be a non-empty set and take an n − 1-ary new connective i〈Ej〉, for each
j ∈ J , i = 1, . . . , n. Then the n-ary E-connection language ELJn is defined as follows.
ELJn-formulas are partitioned into n sets, each one containing the so-called i-formulas for
some i = 1, . . . , n. For all i = 1, . . . , n, the sets of i-formulas are defined by simultaneous
induction:

• the propositional variables pi0, p
i
1, . . . are i-formulas,

• the set of i-formulas is closed under the Boolean connectives and the modal oper-
ators 2i and 3i,

• if ϕk is a k-formula, for each k = 1, . . . , i− 1, i+ 1, . . . , n, then

i〈Ej〉 (ϕ1, . . . , ϕi−1, ϕi+1, . . . , ϕn)

is an i-formula, for every j ∈ J .

ELJn-formulas are evaluated in ELJn-models. These are structures of the form

M =
〈
M1, . . . ,Mn, E

M
j

〉
j∈J ,

where the Mi = 〈〈Wi, Ri〉 ,Vi〉 are (unimodal) Kripke models and EM
j ⊆W1×· · ·×Wn,

for each j ∈ J . The truth-relation ‘M, w |= ϕ’ for i-formulas ϕ and worlds w in Mi is
defined inductively as follows, simultaneously for i = 1, . . . , n:

• M, w |= pik iff w ∈ Vi(pik),

• M, w |= ¬ψ iff M, w 6|= ψ,
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• M, w |= ψ ∧ χ iff M, w |= ψ and M, w |= χ,

• M, w |= 3iψ iff there is v ∈Wi such that wRiv and M, v |= ψ,

• M, w |= i〈Ej〉 (ψ1, . . . , ψi−1, ψi+1, . . . , ψn) iff for all k = 1, . . . , i − 1, i + 1, . . . , n
there are vk ∈Wk such that M, vk |= ψk and 〈v1, . . . , vi−1, w, vi+1, . . . , vn〉 ∈ EM

j .

We say that an i-formula ϕ is true in M if M, w |= ϕ for all w ∈Wi.
Now let L1, . . . , Ln be unimodal logics formulated in n ‘almost disjoint’ copies ofML1

as described above, and let J be a non-empty set. The basic E-connection

ECJ(L1, . . . , Ln)

of L1, . . . , Ln is the set of all ELJn-formulas that are true in all ELJn-models M =
〈M1, . . . ,Mn, E

M
j 〉j∈J where Mi is a model for Li, for i = 1, . . . , n.

The following theorem on the transfer of decidability is proved in [55] in the more
general setting of ‘abstract desription systems:’

THEOREM 59. If L1, . . . , Ln are all decidable unimodal modal logics, then the basic
E-connection ECJ(L1, . . . , Ln) is decidable.

Intuively, the decision procedure for, say, EC{0}(L1, L2) works as follows. As usual,
we can consider satisfiability instead of validity. To check whether there exists a model
M = 〈M1,M2, E0〉 and a world w in Mi such that M, w |= ϕ for a given i-formula ϕ,
the algorithm non-deterministically ‘guesses’

• the 1-types that are realised in M1 and the 2-types that are realised in M2 (where
a k-type is a set of k-formulas that are true at a world of Mk), and

• a binary relation e between the guessed sets of 1-types and 2-types.

Then it checks whether the guessed sets satisfy a collection of ‘integrity conditions.’
This check involves satisfiability tests of certain sets of k-formulas constructed from ϕ,
for k = 1, 2—here we exploit that L1 and L2 are decidable. If the integrity conditions
are satisfied, then it is possible to construct a model satisfying ϕ using models of the
constructed sets of k-formulas. If the integrity conditions are not satisfied then ϕ is not
satisfiable. This algorithm also provides an upper bound for the satisfiability problem
for ECJ(L1, . . . , Ln): the time complexity is non-deterministic and one exponent higher
than the maximal time complexity of the component procedures.
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